Constructing Highly Nonlinear Cryptographic Balanced Boolean Functions on Learning Capabilities of Recurrent Neural Networks

This study presents a novel approach to cryptographic algorithm design that harnesses the power of recurrent neural networks. Unlike traditional mathematical-based methods, neural networks offer nonlinear models that excel at capturing chaotic behavior within systems. We employ a recurrent neural ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.150255-150267
Hauptverfasser: Muhammad Waseem, Hafiz, Asfand Hafeez, Muhammad, Ahmad, Shabir, David Deebak, Bakkiam, Munir, Noor, Majeed, Abdul, Oun Hwang, Seoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150267
container_issue
container_start_page 150255
container_title IEEE access
container_volume 12
creator Muhammad Waseem, Hafiz
Asfand Hafeez, Muhammad
Ahmad, Shabir
David Deebak, Bakkiam
Munir, Noor
Majeed, Abdul
Oun Hwang, Seoung
description This study presents a novel approach to cryptographic algorithm design that harnesses the power of recurrent neural networks. Unlike traditional mathematical-based methods, neural networks offer nonlinear models that excel at capturing chaotic behavior within systems. We employ a recurrent neural network trained on Monte Carlo estimation to predict future states and generate confusion components. The resulting highly nonlinear substitution boxes exhibit exceptional characteristics, with a maximum nonlinearity of 114 and low linear and differential probabilities. To evaluate the efficacy of our methodology, we employ a comprehensive range of traditional and advanced metrics for assessing randomness and cryptanalytics. Comparative analysis against state-of-the-art methods demonstrates that our developed nonlinear confusion component offers remarkable efficiency for block-cipher applications.
doi_str_mv 10.1109/ACCESS.2024.3477260
format Article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3477260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10710344</ieee_id><doaj_id>oai_doaj_org_article_29cf6d753a3d4e678a172e2ebd86cdf1</doaj_id><sourcerecordid>oai_doaj_org_article_29cf6d753a3d4e678a172e2ebd86cdf1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-e2c112ed9a38c136caa1e27ee5ba8ee75f209eca136bd9444713e22d0291d193</originalsourceid><addsrcrecordid>eNpNkd1qwkAQRkNpoWJ9gvZiX0C7P0k2udSgbUEsVO-XcXeia9Nd2USK0IfvWqU4NzN8wzk3X5I8MjpijJbP46qaLpcjTnk6EqmUPKc3SY-zvByKTOS3V_d9MmjbHY1TxCiTveSn8q7twkF31m3Iq91smyNZeNdYhxBIFY77zm8C7LdWkwk04DQaMvG-QXBkdnARjAbiHZlHwJ0sFexhbRvbWYyPmnygPoSAriMLPARo4uq-ffhsH5K7GpoWB5fdT1az6ap6Hc7fX96q8Xyoec66IXLNGEdTgig0E7kGYMglYraGAlFmNaclaoivtSnTNJVMIOeG8pIZVop-8nbWGg87tQ_2C8JRebDqL_BhoyB0VjeoeKnr3MhMgDAp5rIAJjlyXJsi16Zm0SXOLh182was_32MqlMd6lyHOtWhLnVE6ulMWUS8IiSjIk3FL30TiaU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Constructing Highly Nonlinear Cryptographic Balanced Boolean Functions on Learning Capabilities of Recurrent Neural Networks</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Muhammad Waseem, Hafiz ; Asfand Hafeez, Muhammad ; Ahmad, Shabir ; David Deebak, Bakkiam ; Munir, Noor ; Majeed, Abdul ; Oun Hwang, Seoung</creator><creatorcontrib>Muhammad Waseem, Hafiz ; Asfand Hafeez, Muhammad ; Ahmad, Shabir ; David Deebak, Bakkiam ; Munir, Noor ; Majeed, Abdul ; Oun Hwang, Seoung</creatorcontrib><description>This study presents a novel approach to cryptographic algorithm design that harnesses the power of recurrent neural networks. Unlike traditional mathematical-based methods, neural networks offer nonlinear models that excel at capturing chaotic behavior within systems. We employ a recurrent neural network trained on Monte Carlo estimation to predict future states and generate confusion components. The resulting highly nonlinear substitution boxes exhibit exceptional characteristics, with a maximum nonlinearity of 114 and low linear and differential probabilities. To evaluate the efficacy of our methodology, we employ a comprehensive range of traditional and advanced metrics for assessing randomness and cryptanalytics. Comparative analysis against state-of-the-art methods demonstrates that our developed nonlinear confusion component offers remarkable efficiency for block-cipher applications.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3477260</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Block ciphers ; Boolean functions ; Ciphers ; confusion components ; Cryptography ; Estimation ; Monte Carlo estimation ; Monte Carlo methods ; Recurrent neural networks ; substitution boxes ; Time series analysis ; Training ; Vectors</subject><ispartof>IEEE access, 2024, Vol.12, p.150255-150267</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-e2c112ed9a38c136caa1e27ee5ba8ee75f209eca136bd9444713e22d0291d193</cites><orcidid>0000-0002-8881-8231 ; 0000-0002-9418-1492 ; 0000-0002-4008-6350 ; 0000-0003-4240-6255 ; 0000-0002-3030-5054 ; 0000-0002-8788-2717 ; 0009-0008-4872-0177</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10710344$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2101,4023,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Muhammad Waseem, Hafiz</creatorcontrib><creatorcontrib>Asfand Hafeez, Muhammad</creatorcontrib><creatorcontrib>Ahmad, Shabir</creatorcontrib><creatorcontrib>David Deebak, Bakkiam</creatorcontrib><creatorcontrib>Munir, Noor</creatorcontrib><creatorcontrib>Majeed, Abdul</creatorcontrib><creatorcontrib>Oun Hwang, Seoung</creatorcontrib><title>Constructing Highly Nonlinear Cryptographic Balanced Boolean Functions on Learning Capabilities of Recurrent Neural Networks</title><title>IEEE access</title><addtitle>Access</addtitle><description>This study presents a novel approach to cryptographic algorithm design that harnesses the power of recurrent neural networks. Unlike traditional mathematical-based methods, neural networks offer nonlinear models that excel at capturing chaotic behavior within systems. We employ a recurrent neural network trained on Monte Carlo estimation to predict future states and generate confusion components. The resulting highly nonlinear substitution boxes exhibit exceptional characteristics, with a maximum nonlinearity of 114 and low linear and differential probabilities. To evaluate the efficacy of our methodology, we employ a comprehensive range of traditional and advanced metrics for assessing randomness and cryptanalytics. Comparative analysis against state-of-the-art methods demonstrates that our developed nonlinear confusion component offers remarkable efficiency for block-cipher applications.</description><subject>Approximation algorithms</subject><subject>Block ciphers</subject><subject>Boolean functions</subject><subject>Ciphers</subject><subject>confusion components</subject><subject>Cryptography</subject><subject>Estimation</subject><subject>Monte Carlo estimation</subject><subject>Monte Carlo methods</subject><subject>Recurrent neural networks</subject><subject>substitution boxes</subject><subject>Time series analysis</subject><subject>Training</subject><subject>Vectors</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd1qwkAQRkNpoWJ9gvZiX0C7P0k2udSgbUEsVO-XcXeia9Nd2USK0IfvWqU4NzN8wzk3X5I8MjpijJbP46qaLpcjTnk6EqmUPKc3SY-zvByKTOS3V_d9MmjbHY1TxCiTveSn8q7twkF31m3Iq91smyNZeNdYhxBIFY77zm8C7LdWkwk04DQaMvG-QXBkdnARjAbiHZlHwJ0sFexhbRvbWYyPmnygPoSAriMLPARo4uq-ffhsH5K7GpoWB5fdT1az6ap6Hc7fX96q8Xyoec66IXLNGEdTgig0E7kGYMglYraGAlFmNaclaoivtSnTNJVMIOeG8pIZVop-8nbWGg87tQ_2C8JRebDqL_BhoyB0VjeoeKnr3MhMgDAp5rIAJjlyXJsi16Zm0SXOLh182was_32MqlMd6lyHOtWhLnVE6ulMWUS8IiSjIk3FL30TiaU</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Muhammad Waseem, Hafiz</creator><creator>Asfand Hafeez, Muhammad</creator><creator>Ahmad, Shabir</creator><creator>David Deebak, Bakkiam</creator><creator>Munir, Noor</creator><creator>Majeed, Abdul</creator><creator>Oun Hwang, Seoung</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8881-8231</orcidid><orcidid>https://orcid.org/0000-0002-9418-1492</orcidid><orcidid>https://orcid.org/0000-0002-4008-6350</orcidid><orcidid>https://orcid.org/0000-0003-4240-6255</orcidid><orcidid>https://orcid.org/0000-0002-3030-5054</orcidid><orcidid>https://orcid.org/0000-0002-8788-2717</orcidid><orcidid>https://orcid.org/0009-0008-4872-0177</orcidid></search><sort><creationdate>2024</creationdate><title>Constructing Highly Nonlinear Cryptographic Balanced Boolean Functions on Learning Capabilities of Recurrent Neural Networks</title><author>Muhammad Waseem, Hafiz ; Asfand Hafeez, Muhammad ; Ahmad, Shabir ; David Deebak, Bakkiam ; Munir, Noor ; Majeed, Abdul ; Oun Hwang, Seoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-e2c112ed9a38c136caa1e27ee5ba8ee75f209eca136bd9444713e22d0291d193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation algorithms</topic><topic>Block ciphers</topic><topic>Boolean functions</topic><topic>Ciphers</topic><topic>confusion components</topic><topic>Cryptography</topic><topic>Estimation</topic><topic>Monte Carlo estimation</topic><topic>Monte Carlo methods</topic><topic>Recurrent neural networks</topic><topic>substitution boxes</topic><topic>Time series analysis</topic><topic>Training</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muhammad Waseem, Hafiz</creatorcontrib><creatorcontrib>Asfand Hafeez, Muhammad</creatorcontrib><creatorcontrib>Ahmad, Shabir</creatorcontrib><creatorcontrib>David Deebak, Bakkiam</creatorcontrib><creatorcontrib>Munir, Noor</creatorcontrib><creatorcontrib>Majeed, Abdul</creatorcontrib><creatorcontrib>Oun Hwang, Seoung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muhammad Waseem, Hafiz</au><au>Asfand Hafeez, Muhammad</au><au>Ahmad, Shabir</au><au>David Deebak, Bakkiam</au><au>Munir, Noor</au><au>Majeed, Abdul</au><au>Oun Hwang, Seoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing Highly Nonlinear Cryptographic Balanced Boolean Functions on Learning Capabilities of Recurrent Neural Networks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>150255</spage><epage>150267</epage><pages>150255-150267</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This study presents a novel approach to cryptographic algorithm design that harnesses the power of recurrent neural networks. Unlike traditional mathematical-based methods, neural networks offer nonlinear models that excel at capturing chaotic behavior within systems. We employ a recurrent neural network trained on Monte Carlo estimation to predict future states and generate confusion components. The resulting highly nonlinear substitution boxes exhibit exceptional characteristics, with a maximum nonlinearity of 114 and low linear and differential probabilities. To evaluate the efficacy of our methodology, we employ a comprehensive range of traditional and advanced metrics for assessing randomness and cryptanalytics. Comparative analysis against state-of-the-art methods demonstrates that our developed nonlinear confusion component offers remarkable efficiency for block-cipher applications.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3477260</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8881-8231</orcidid><orcidid>https://orcid.org/0000-0002-9418-1492</orcidid><orcidid>https://orcid.org/0000-0002-4008-6350</orcidid><orcidid>https://orcid.org/0000-0003-4240-6255</orcidid><orcidid>https://orcid.org/0000-0002-3030-5054</orcidid><orcidid>https://orcid.org/0000-0002-8788-2717</orcidid><orcidid>https://orcid.org/0009-0008-4872-0177</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.150255-150267
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3477260
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Approximation algorithms
Block ciphers
Boolean functions
Ciphers
confusion components
Cryptography
Estimation
Monte Carlo estimation
Monte Carlo methods
Recurrent neural networks
substitution boxes
Time series analysis
Training
Vectors
title Constructing Highly Nonlinear Cryptographic Balanced Boolean Functions on Learning Capabilities of Recurrent Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A56%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20Highly%20Nonlinear%20Cryptographic%20Balanced%20Boolean%20Functions%20on%20Learning%20Capabilities%20of%20Recurrent%20Neural%20Networks&rft.jtitle=IEEE%20access&rft.au=Muhammad%20Waseem,%20Hafiz&rft.date=2024&rft.volume=12&rft.spage=150255&rft.epage=150267&rft.pages=150255-150267&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3477260&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_29cf6d753a3d4e678a172e2ebd86cdf1%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10710344&rft_doaj_id=oai_doaj_org_article_29cf6d753a3d4e678a172e2ebd86cdf1&rfr_iscdi=true