Constructing Highly Nonlinear Cryptographic Balanced Boolean Functions on Learning Capabilities of Recurrent Neural Networks
This study presents a novel approach to cryptographic algorithm design that harnesses the power of recurrent neural networks. Unlike traditional mathematical-based methods, neural networks offer nonlinear models that excel at capturing chaotic behavior within systems. We employ a recurrent neural ne...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.150255-150267 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 150267 |
---|---|
container_issue | |
container_start_page | 150255 |
container_title | IEEE access |
container_volume | 12 |
creator | Muhammad Waseem, Hafiz Asfand Hafeez, Muhammad Ahmad, Shabir David Deebak, Bakkiam Munir, Noor Majeed, Abdul Oun Hwang, Seoung |
description | This study presents a novel approach to cryptographic algorithm design that harnesses the power of recurrent neural networks. Unlike traditional mathematical-based methods, neural networks offer nonlinear models that excel at capturing chaotic behavior within systems. We employ a recurrent neural network trained on Monte Carlo estimation to predict future states and generate confusion components. The resulting highly nonlinear substitution boxes exhibit exceptional characteristics, with a maximum nonlinearity of 114 and low linear and differential probabilities. To evaluate the efficacy of our methodology, we employ a comprehensive range of traditional and advanced metrics for assessing randomness and cryptanalytics. Comparative analysis against state-of-the-art methods demonstrates that our developed nonlinear confusion component offers remarkable efficiency for block-cipher applications. |
doi_str_mv | 10.1109/ACCESS.2024.3477260 |
format | Article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3477260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10710344</ieee_id><doaj_id>oai_doaj_org_article_29cf6d753a3d4e678a172e2ebd86cdf1</doaj_id><sourcerecordid>oai_doaj_org_article_29cf6d753a3d4e678a172e2ebd86cdf1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-e2c112ed9a38c136caa1e27ee5ba8ee75f209eca136bd9444713e22d0291d193</originalsourceid><addsrcrecordid>eNpNkd1qwkAQRkNpoWJ9gvZiX0C7P0k2udSgbUEsVO-XcXeia9Nd2USK0IfvWqU4NzN8wzk3X5I8MjpijJbP46qaLpcjTnk6EqmUPKc3SY-zvByKTOS3V_d9MmjbHY1TxCiTveSn8q7twkF31m3Iq91smyNZeNdYhxBIFY77zm8C7LdWkwk04DQaMvG-QXBkdnARjAbiHZlHwJ0sFexhbRvbWYyPmnygPoSAriMLPARo4uq-ffhsH5K7GpoWB5fdT1az6ap6Hc7fX96q8Xyoec66IXLNGEdTgig0E7kGYMglYraGAlFmNaclaoivtSnTNJVMIOeG8pIZVop-8nbWGg87tQ_2C8JRebDqL_BhoyB0VjeoeKnr3MhMgDAp5rIAJjlyXJsi16Zm0SXOLh182was_32MqlMd6lyHOtWhLnVE6ulMWUS8IiSjIk3FL30TiaU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Constructing Highly Nonlinear Cryptographic Balanced Boolean Functions on Learning Capabilities of Recurrent Neural Networks</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Muhammad Waseem, Hafiz ; Asfand Hafeez, Muhammad ; Ahmad, Shabir ; David Deebak, Bakkiam ; Munir, Noor ; Majeed, Abdul ; Oun Hwang, Seoung</creator><creatorcontrib>Muhammad Waseem, Hafiz ; Asfand Hafeez, Muhammad ; Ahmad, Shabir ; David Deebak, Bakkiam ; Munir, Noor ; Majeed, Abdul ; Oun Hwang, Seoung</creatorcontrib><description>This study presents a novel approach to cryptographic algorithm design that harnesses the power of recurrent neural networks. Unlike traditional mathematical-based methods, neural networks offer nonlinear models that excel at capturing chaotic behavior within systems. We employ a recurrent neural network trained on Monte Carlo estimation to predict future states and generate confusion components. The resulting highly nonlinear substitution boxes exhibit exceptional characteristics, with a maximum nonlinearity of 114 and low linear and differential probabilities. To evaluate the efficacy of our methodology, we employ a comprehensive range of traditional and advanced metrics for assessing randomness and cryptanalytics. Comparative analysis against state-of-the-art methods demonstrates that our developed nonlinear confusion component offers remarkable efficiency for block-cipher applications.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3477260</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Block ciphers ; Boolean functions ; Ciphers ; confusion components ; Cryptography ; Estimation ; Monte Carlo estimation ; Monte Carlo methods ; Recurrent neural networks ; substitution boxes ; Time series analysis ; Training ; Vectors</subject><ispartof>IEEE access, 2024, Vol.12, p.150255-150267</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-e2c112ed9a38c136caa1e27ee5ba8ee75f209eca136bd9444713e22d0291d193</cites><orcidid>0000-0002-8881-8231 ; 0000-0002-9418-1492 ; 0000-0002-4008-6350 ; 0000-0003-4240-6255 ; 0000-0002-3030-5054 ; 0000-0002-8788-2717 ; 0009-0008-4872-0177</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10710344$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2101,4023,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Muhammad Waseem, Hafiz</creatorcontrib><creatorcontrib>Asfand Hafeez, Muhammad</creatorcontrib><creatorcontrib>Ahmad, Shabir</creatorcontrib><creatorcontrib>David Deebak, Bakkiam</creatorcontrib><creatorcontrib>Munir, Noor</creatorcontrib><creatorcontrib>Majeed, Abdul</creatorcontrib><creatorcontrib>Oun Hwang, Seoung</creatorcontrib><title>Constructing Highly Nonlinear Cryptographic Balanced Boolean Functions on Learning Capabilities of Recurrent Neural Networks</title><title>IEEE access</title><addtitle>Access</addtitle><description>This study presents a novel approach to cryptographic algorithm design that harnesses the power of recurrent neural networks. Unlike traditional mathematical-based methods, neural networks offer nonlinear models that excel at capturing chaotic behavior within systems. We employ a recurrent neural network trained on Monte Carlo estimation to predict future states and generate confusion components. The resulting highly nonlinear substitution boxes exhibit exceptional characteristics, with a maximum nonlinearity of 114 and low linear and differential probabilities. To evaluate the efficacy of our methodology, we employ a comprehensive range of traditional and advanced metrics for assessing randomness and cryptanalytics. Comparative analysis against state-of-the-art methods demonstrates that our developed nonlinear confusion component offers remarkable efficiency for block-cipher applications.</description><subject>Approximation algorithms</subject><subject>Block ciphers</subject><subject>Boolean functions</subject><subject>Ciphers</subject><subject>confusion components</subject><subject>Cryptography</subject><subject>Estimation</subject><subject>Monte Carlo estimation</subject><subject>Monte Carlo methods</subject><subject>Recurrent neural networks</subject><subject>substitution boxes</subject><subject>Time series analysis</subject><subject>Training</subject><subject>Vectors</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd1qwkAQRkNpoWJ9gvZiX0C7P0k2udSgbUEsVO-XcXeia9Nd2USK0IfvWqU4NzN8wzk3X5I8MjpijJbP46qaLpcjTnk6EqmUPKc3SY-zvByKTOS3V_d9MmjbHY1TxCiTveSn8q7twkF31m3Iq91smyNZeNdYhxBIFY77zm8C7LdWkwk04DQaMvG-QXBkdnARjAbiHZlHwJ0sFexhbRvbWYyPmnygPoSAriMLPARo4uq-ffhsH5K7GpoWB5fdT1az6ap6Hc7fX96q8Xyoec66IXLNGEdTgig0E7kGYMglYraGAlFmNaclaoivtSnTNJVMIOeG8pIZVop-8nbWGg87tQ_2C8JRebDqL_BhoyB0VjeoeKnr3MhMgDAp5rIAJjlyXJsi16Zm0SXOLh182was_32MqlMd6lyHOtWhLnVE6ulMWUS8IiSjIk3FL30TiaU</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Muhammad Waseem, Hafiz</creator><creator>Asfand Hafeez, Muhammad</creator><creator>Ahmad, Shabir</creator><creator>David Deebak, Bakkiam</creator><creator>Munir, Noor</creator><creator>Majeed, Abdul</creator><creator>Oun Hwang, Seoung</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8881-8231</orcidid><orcidid>https://orcid.org/0000-0002-9418-1492</orcidid><orcidid>https://orcid.org/0000-0002-4008-6350</orcidid><orcidid>https://orcid.org/0000-0003-4240-6255</orcidid><orcidid>https://orcid.org/0000-0002-3030-5054</orcidid><orcidid>https://orcid.org/0000-0002-8788-2717</orcidid><orcidid>https://orcid.org/0009-0008-4872-0177</orcidid></search><sort><creationdate>2024</creationdate><title>Constructing Highly Nonlinear Cryptographic Balanced Boolean Functions on Learning Capabilities of Recurrent Neural Networks</title><author>Muhammad Waseem, Hafiz ; Asfand Hafeez, Muhammad ; Ahmad, Shabir ; David Deebak, Bakkiam ; Munir, Noor ; Majeed, Abdul ; Oun Hwang, Seoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-e2c112ed9a38c136caa1e27ee5ba8ee75f209eca136bd9444713e22d0291d193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation algorithms</topic><topic>Block ciphers</topic><topic>Boolean functions</topic><topic>Ciphers</topic><topic>confusion components</topic><topic>Cryptography</topic><topic>Estimation</topic><topic>Monte Carlo estimation</topic><topic>Monte Carlo methods</topic><topic>Recurrent neural networks</topic><topic>substitution boxes</topic><topic>Time series analysis</topic><topic>Training</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muhammad Waseem, Hafiz</creatorcontrib><creatorcontrib>Asfand Hafeez, Muhammad</creatorcontrib><creatorcontrib>Ahmad, Shabir</creatorcontrib><creatorcontrib>David Deebak, Bakkiam</creatorcontrib><creatorcontrib>Munir, Noor</creatorcontrib><creatorcontrib>Majeed, Abdul</creatorcontrib><creatorcontrib>Oun Hwang, Seoung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muhammad Waseem, Hafiz</au><au>Asfand Hafeez, Muhammad</au><au>Ahmad, Shabir</au><au>David Deebak, Bakkiam</au><au>Munir, Noor</au><au>Majeed, Abdul</au><au>Oun Hwang, Seoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing Highly Nonlinear Cryptographic Balanced Boolean Functions on Learning Capabilities of Recurrent Neural Networks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>150255</spage><epage>150267</epage><pages>150255-150267</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This study presents a novel approach to cryptographic algorithm design that harnesses the power of recurrent neural networks. Unlike traditional mathematical-based methods, neural networks offer nonlinear models that excel at capturing chaotic behavior within systems. We employ a recurrent neural network trained on Monte Carlo estimation to predict future states and generate confusion components. The resulting highly nonlinear substitution boxes exhibit exceptional characteristics, with a maximum nonlinearity of 114 and low linear and differential probabilities. To evaluate the efficacy of our methodology, we employ a comprehensive range of traditional and advanced metrics for assessing randomness and cryptanalytics. Comparative analysis against state-of-the-art methods demonstrates that our developed nonlinear confusion component offers remarkable efficiency for block-cipher applications.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3477260</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8881-8231</orcidid><orcidid>https://orcid.org/0000-0002-9418-1492</orcidid><orcidid>https://orcid.org/0000-0002-4008-6350</orcidid><orcidid>https://orcid.org/0000-0003-4240-6255</orcidid><orcidid>https://orcid.org/0000-0002-3030-5054</orcidid><orcidid>https://orcid.org/0000-0002-8788-2717</orcidid><orcidid>https://orcid.org/0009-0008-4872-0177</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.150255-150267 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2024_3477260 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Approximation algorithms Block ciphers Boolean functions Ciphers confusion components Cryptography Estimation Monte Carlo estimation Monte Carlo methods Recurrent neural networks substitution boxes Time series analysis Training Vectors |
title | Constructing Highly Nonlinear Cryptographic Balanced Boolean Functions on Learning Capabilities of Recurrent Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A56%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20Highly%20Nonlinear%20Cryptographic%20Balanced%20Boolean%20Functions%20on%20Learning%20Capabilities%20of%20Recurrent%20Neural%20Networks&rft.jtitle=IEEE%20access&rft.au=Muhammad%20Waseem,%20Hafiz&rft.date=2024&rft.volume=12&rft.spage=150255&rft.epage=150267&rft.pages=150255-150267&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3477260&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_29cf6d753a3d4e678a172e2ebd86cdf1%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10710344&rft_doaj_id=oai_doaj_org_article_29cf6d753a3d4e678a172e2ebd86cdf1&rfr_iscdi=true |