CroSSHeteroFL: Cross-Stratified Sampling Composition-Fitting to Federated Learning for Heterogeneous Clients
In the large-scale deployment of federated learning (FL) systems, the heterogeneity of clients, such as mobile phones and Internet of Things (IoT) devices with different configurations, constitutes a significant problem regarding fairness, training performance, and accuracy. Such system heterogeneit...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.148011-148025 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!