CroSSHeteroFL: Cross-Stratified Sampling Composition-Fitting to Federated Learning for Heterogeneous Clients

In the large-scale deployment of federated learning (FL) systems, the heterogeneity of clients, such as mobile phones and Internet of Things (IoT) devices with different configurations, constitutes a significant problem regarding fairness, training performance, and accuracy. Such system heterogeneit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.148011-148025
Hauptverfasser: Tinh, Vo Phuc, Son, Hoang Hai, Nam, Nguyen Hoang, Dang, Duc Ngoc Minh, Le, Duy-Dong, Nguyen, Thai-Binh, Pham, Thanh-Qui, Nguyen, van-Luong, Huynh, Duy-Thanh, Khoa, Tran Anh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!