CroSSHeteroFL: Cross-Stratified Sampling Composition-Fitting to Federated Learning for Heterogeneous Clients

In the large-scale deployment of federated learning (FL) systems, the heterogeneity of clients, such as mobile phones and Internet of Things (IoT) devices with different configurations, constitutes a significant problem regarding fairness, training performance, and accuracy. Such system heterogeneit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.148011-148025
Hauptverfasser: Tinh, Vo Phuc, Son, Hoang Hai, Nam, Nguyen Hoang, Dang, Duc Ngoc Minh, Le, Duy-Dong, Nguyen, Thai-Binh, Pham, Thanh-Qui, Nguyen, van-Luong, Huynh, Duy-Thanh, Khoa, Tran Anh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 148025
container_issue
container_start_page 148011
container_title IEEE access
container_volume 12
creator Tinh, Vo Phuc
Son, Hoang Hai
Nam, Nguyen Hoang
Dang, Duc Ngoc Minh
Le, Duy-Dong
Nguyen, Thai-Binh
Pham, Thanh-Qui
Nguyen, van-Luong
Huynh, Duy-Thanh
Khoa, Tran Anh
description In the large-scale deployment of federated learning (FL) systems, the heterogeneity of clients, such as mobile phones and Internet of Things (IoT) devices with different configurations, constitutes a significant problem regarding fairness, training performance, and accuracy. Such system heterogeneity leads to an inevitable trade-off between model complexity and data accessibility as a bottleneck. To avoid this situation and to achieve resource-adaptive FL, we introduce CrossHeteroFL to deal with heterogeneous clients equipped with different computational and communication capabilities. Our solution enables the training of heterogeneous local models with additional computational complexity and still generates a single global inference model. We demonstrate several CrossHeteroFL training scenarios and conduct extensive empirical evaluation, covering four levels of the computational complexity of three-model architectures on two datasets. The proposed mechanism provides the system with non-elementary access to a scattered fit among clients. However, the proposed method generalizes soft handover-based solutions by adjusting the model width according to clients' capabilities and a tiered balance of data-source overviews to assess clients' interests accurately. The evaluation results indicate our method solves the challenges in previous studies and produces greater top-1 accuracy and consistent performance under heterogeneous client conditions.
doi_str_mv 10.1109/ACCESS.2024.3475737
format Article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3475737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10706851</ieee_id><doaj_id>oai_doaj_org_article_002e92d40ddc46bfbd7a9a9b76cbd94c</doaj_id><sourcerecordid>oai_doaj_org_article_002e92d40ddc46bfbd7a9a9b76cbd94c</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-10554c491b0169da610fa975195edd5cf8b7db98f0c76ade19482003489097d83</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOOZ-gV70D3QmbT4a70bZ3KDgRfU6pMnpyOiakcYL_72tHbLcJHk578PhQeiZ4DUhWL5uynJb1-sMZ3SdU8FELu7QIiNcpjnL-f3N-xGthuGEx1OMERML1JXB1_UeIgS_q96S8TsMaR2Djq51YJNany-d649J6c8XP7jofJ_uXIxTFn2yAwvj8DhZgQ79lLY-JDPxCD347yEpOwd9HJ7QQ6u7AVbXe4m-dtvPcp9WH--HclOlJuMkpgQzRg2VpMHjllZzglstBSOSgbXMtEUjbCOLFhvBtQUiaZFhnNNCYilskS_RYeZar0_qEtxZhx_ltVN_gQ9HpUN0pgOFcQYysxRbayhv2sYKLbVsBDeNldSMrHxmmclMgPafR7Ca_KvZv5r8q6v_sfUytxwA3DQE5gUj-S_WbYLx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CroSSHeteroFL: Cross-Stratified Sampling Composition-Fitting to Federated Learning for Heterogeneous Clients</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tinh, Vo Phuc ; Son, Hoang Hai ; Nam, Nguyen Hoang ; Dang, Duc Ngoc Minh ; Le, Duy-Dong ; Nguyen, Thai-Binh ; Pham, Thanh-Qui ; Nguyen, van-Luong ; Huynh, Duy-Thanh ; Khoa, Tran Anh</creator><creatorcontrib>Tinh, Vo Phuc ; Son, Hoang Hai ; Nam, Nguyen Hoang ; Dang, Duc Ngoc Minh ; Le, Duy-Dong ; Nguyen, Thai-Binh ; Pham, Thanh-Qui ; Nguyen, van-Luong ; Huynh, Duy-Thanh ; Khoa, Tran Anh</creatorcontrib><description>In the large-scale deployment of federated learning (FL) systems, the heterogeneity of clients, such as mobile phones and Internet of Things (IoT) devices with different configurations, constitutes a significant problem regarding fairness, training performance, and accuracy. Such system heterogeneity leads to an inevitable trade-off between model complexity and data accessibility as a bottleneck. To avoid this situation and to achieve resource-adaptive FL, we introduce CrossHeteroFL to deal with heterogeneous clients equipped with different computational and communication capabilities. Our solution enables the training of heterogeneous local models with additional computational complexity and still generates a single global inference model. We demonstrate several CrossHeteroFL training scenarios and conduct extensive empirical evaluation, covering four levels of the computational complexity of three-model architectures on two datasets. The proposed mechanism provides the system with non-elementary access to a scattered fit among clients. However, the proposed method generalizes soft handover-based solutions by adjusting the model width according to clients' capabilities and a tiered balance of data-source overviews to assess clients' interests accurately. The evaluation results indicate our method solves the challenges in previous studies and produces greater top-1 accuracy and consistent performance under heterogeneous client conditions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3475737</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; capability ; computation complexity ; Computational complexity ; Computational modeling ; Computer architecture ; Data models ; Federated learning ; heterogeneity ; Internet of Things ; Noise measurement ; resource-adaptive ; Servers ; Training</subject><ispartof>IEEE access, 2024, Vol.12, p.148011-148025</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-10554c491b0169da610fa975195edd5cf8b7db98f0c76ade19482003489097d83</cites><orcidid>0000-0002-7365-4078 ; 0000-0001-9302-3129 ; 0000-0003-4649-8417 ; 0000-0001-7987-6627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10706851$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Tinh, Vo Phuc</creatorcontrib><creatorcontrib>Son, Hoang Hai</creatorcontrib><creatorcontrib>Nam, Nguyen Hoang</creatorcontrib><creatorcontrib>Dang, Duc Ngoc Minh</creatorcontrib><creatorcontrib>Le, Duy-Dong</creatorcontrib><creatorcontrib>Nguyen, Thai-Binh</creatorcontrib><creatorcontrib>Pham, Thanh-Qui</creatorcontrib><creatorcontrib>Nguyen, van-Luong</creatorcontrib><creatorcontrib>Huynh, Duy-Thanh</creatorcontrib><creatorcontrib>Khoa, Tran Anh</creatorcontrib><title>CroSSHeteroFL: Cross-Stratified Sampling Composition-Fitting to Federated Learning for Heterogeneous Clients</title><title>IEEE access</title><addtitle>Access</addtitle><description>In the large-scale deployment of federated learning (FL) systems, the heterogeneity of clients, such as mobile phones and Internet of Things (IoT) devices with different configurations, constitutes a significant problem regarding fairness, training performance, and accuracy. Such system heterogeneity leads to an inevitable trade-off between model complexity and data accessibility as a bottleneck. To avoid this situation and to achieve resource-adaptive FL, we introduce CrossHeteroFL to deal with heterogeneous clients equipped with different computational and communication capabilities. Our solution enables the training of heterogeneous local models with additional computational complexity and still generates a single global inference model. We demonstrate several CrossHeteroFL training scenarios and conduct extensive empirical evaluation, covering four levels of the computational complexity of three-model architectures on two datasets. The proposed mechanism provides the system with non-elementary access to a scattered fit among clients. However, the proposed method generalizes soft handover-based solutions by adjusting the model width according to clients' capabilities and a tiered balance of data-source overviews to assess clients' interests accurately. The evaluation results indicate our method solves the challenges in previous studies and produces greater top-1 accuracy and consistent performance under heterogeneous client conditions.</description><subject>Adaptation models</subject><subject>capability</subject><subject>computation complexity</subject><subject>Computational complexity</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Data models</subject><subject>Federated learning</subject><subject>heterogeneity</subject><subject>Internet of Things</subject><subject>Noise measurement</subject><subject>resource-adaptive</subject><subject>Servers</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkF1LwzAUhoMoOOZ-gV70D3QmbT4a70bZ3KDgRfU6pMnpyOiakcYL_72tHbLcJHk578PhQeiZ4DUhWL5uynJb1-sMZ3SdU8FELu7QIiNcpjnL-f3N-xGthuGEx1OMERML1JXB1_UeIgS_q96S8TsMaR2Djq51YJNany-d649J6c8XP7jofJ_uXIxTFn2yAwvj8DhZgQ79lLY-JDPxCD347yEpOwd9HJ7QQ6u7AVbXe4m-dtvPcp9WH--HclOlJuMkpgQzRg2VpMHjllZzglstBSOSgbXMtEUjbCOLFhvBtQUiaZFhnNNCYilskS_RYeZar0_qEtxZhx_ltVN_gQ9HpUN0pgOFcQYysxRbayhv2sYKLbVsBDeNldSMrHxmmclMgPafR7Ca_KvZv5r8q6v_sfUytxwA3DQE5gUj-S_WbYLx</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Tinh, Vo Phuc</creator><creator>Son, Hoang Hai</creator><creator>Nam, Nguyen Hoang</creator><creator>Dang, Duc Ngoc Minh</creator><creator>Le, Duy-Dong</creator><creator>Nguyen, Thai-Binh</creator><creator>Pham, Thanh-Qui</creator><creator>Nguyen, van-Luong</creator><creator>Huynh, Duy-Thanh</creator><creator>Khoa, Tran Anh</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7365-4078</orcidid><orcidid>https://orcid.org/0000-0001-9302-3129</orcidid><orcidid>https://orcid.org/0000-0003-4649-8417</orcidid><orcidid>https://orcid.org/0000-0001-7987-6627</orcidid></search><sort><creationdate>2024</creationdate><title>CroSSHeteroFL: Cross-Stratified Sampling Composition-Fitting to Federated Learning for Heterogeneous Clients</title><author>Tinh, Vo Phuc ; Son, Hoang Hai ; Nam, Nguyen Hoang ; Dang, Duc Ngoc Minh ; Le, Duy-Dong ; Nguyen, Thai-Binh ; Pham, Thanh-Qui ; Nguyen, van-Luong ; Huynh, Duy-Thanh ; Khoa, Tran Anh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-10554c491b0169da610fa975195edd5cf8b7db98f0c76ade19482003489097d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>capability</topic><topic>computation complexity</topic><topic>Computational complexity</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Data models</topic><topic>Federated learning</topic><topic>heterogeneity</topic><topic>Internet of Things</topic><topic>Noise measurement</topic><topic>resource-adaptive</topic><topic>Servers</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tinh, Vo Phuc</creatorcontrib><creatorcontrib>Son, Hoang Hai</creatorcontrib><creatorcontrib>Nam, Nguyen Hoang</creatorcontrib><creatorcontrib>Dang, Duc Ngoc Minh</creatorcontrib><creatorcontrib>Le, Duy-Dong</creatorcontrib><creatorcontrib>Nguyen, Thai-Binh</creatorcontrib><creatorcontrib>Pham, Thanh-Qui</creatorcontrib><creatorcontrib>Nguyen, van-Luong</creatorcontrib><creatorcontrib>Huynh, Duy-Thanh</creatorcontrib><creatorcontrib>Khoa, Tran Anh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tinh, Vo Phuc</au><au>Son, Hoang Hai</au><au>Nam, Nguyen Hoang</au><au>Dang, Duc Ngoc Minh</au><au>Le, Duy-Dong</au><au>Nguyen, Thai-Binh</au><au>Pham, Thanh-Qui</au><au>Nguyen, van-Luong</au><au>Huynh, Duy-Thanh</au><au>Khoa, Tran Anh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CroSSHeteroFL: Cross-Stratified Sampling Composition-Fitting to Federated Learning for Heterogeneous Clients</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>148011</spage><epage>148025</epage><pages>148011-148025</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In the large-scale deployment of federated learning (FL) systems, the heterogeneity of clients, such as mobile phones and Internet of Things (IoT) devices with different configurations, constitutes a significant problem regarding fairness, training performance, and accuracy. Such system heterogeneity leads to an inevitable trade-off between model complexity and data accessibility as a bottleneck. To avoid this situation and to achieve resource-adaptive FL, we introduce CrossHeteroFL to deal with heterogeneous clients equipped with different computational and communication capabilities. Our solution enables the training of heterogeneous local models with additional computational complexity and still generates a single global inference model. We demonstrate several CrossHeteroFL training scenarios and conduct extensive empirical evaluation, covering four levels of the computational complexity of three-model architectures on two datasets. The proposed mechanism provides the system with non-elementary access to a scattered fit among clients. However, the proposed method generalizes soft handover-based solutions by adjusting the model width according to clients' capabilities and a tiered balance of data-source overviews to assess clients' interests accurately. The evaluation results indicate our method solves the challenges in previous studies and produces greater top-1 accuracy and consistent performance under heterogeneous client conditions.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3475737</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7365-4078</orcidid><orcidid>https://orcid.org/0000-0001-9302-3129</orcidid><orcidid>https://orcid.org/0000-0003-4649-8417</orcidid><orcidid>https://orcid.org/0000-0001-7987-6627</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.148011-148025
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3475737
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adaptation models
capability
computation complexity
Computational complexity
Computational modeling
Computer architecture
Data models
Federated learning
heterogeneity
Internet of Things
Noise measurement
resource-adaptive
Servers
Training
title CroSSHeteroFL: Cross-Stratified Sampling Composition-Fitting to Federated Learning for Heterogeneous Clients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T00%3A22%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CroSSHeteroFL:%20Cross-Stratified%20Sampling%20Composition-Fitting%20to%20Federated%20Learning%20for%20Heterogeneous%20Clients&rft.jtitle=IEEE%20access&rft.au=Tinh,%20Vo%20Phuc&rft.date=2024&rft.volume=12&rft.spage=148011&rft.epage=148025&rft.pages=148011-148025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3475737&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_002e92d40ddc46bfbd7a9a9b76cbd94c%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10706851&rft_doaj_id=oai_doaj_org_article_002e92d40ddc46bfbd7a9a9b76cbd94c&rfr_iscdi=true