CroSSHeteroFL: Cross-Stratified Sampling Composition-Fitting to Federated Learning for Heterogeneous Clients
In the large-scale deployment of federated learning (FL) systems, the heterogeneity of clients, such as mobile phones and Internet of Things (IoT) devices with different configurations, constitutes a significant problem regarding fairness, training performance, and accuracy. Such system heterogeneit...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.148011-148025 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 148025 |
---|---|
container_issue | |
container_start_page | 148011 |
container_title | IEEE access |
container_volume | 12 |
creator | Tinh, Vo Phuc Son, Hoang Hai Nam, Nguyen Hoang Dang, Duc Ngoc Minh Le, Duy-Dong Nguyen, Thai-Binh Pham, Thanh-Qui Nguyen, van-Luong Huynh, Duy-Thanh Khoa, Tran Anh |
description | In the large-scale deployment of federated learning (FL) systems, the heterogeneity of clients, such as mobile phones and Internet of Things (IoT) devices with different configurations, constitutes a significant problem regarding fairness, training performance, and accuracy. Such system heterogeneity leads to an inevitable trade-off between model complexity and data accessibility as a bottleneck. To avoid this situation and to achieve resource-adaptive FL, we introduce CrossHeteroFL to deal with heterogeneous clients equipped with different computational and communication capabilities. Our solution enables the training of heterogeneous local models with additional computational complexity and still generates a single global inference model. We demonstrate several CrossHeteroFL training scenarios and conduct extensive empirical evaluation, covering four levels of the computational complexity of three-model architectures on two datasets. The proposed mechanism provides the system with non-elementary access to a scattered fit among clients. However, the proposed method generalizes soft handover-based solutions by adjusting the model width according to clients' capabilities and a tiered balance of data-source overviews to assess clients' interests accurately. The evaluation results indicate our method solves the challenges in previous studies and produces greater top-1 accuracy and consistent performance under heterogeneous client conditions. |
doi_str_mv | 10.1109/ACCESS.2024.3475737 |
format | Article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3475737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10706851</ieee_id><doaj_id>oai_doaj_org_article_002e92d40ddc46bfbd7a9a9b76cbd94c</doaj_id><sourcerecordid>oai_doaj_org_article_002e92d40ddc46bfbd7a9a9b76cbd94c</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-10554c491b0169da610fa975195edd5cf8b7db98f0c76ade19482003489097d83</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOOZ-gV70D3QmbT4a70bZ3KDgRfU6pMnpyOiakcYL_72tHbLcJHk578PhQeiZ4DUhWL5uynJb1-sMZ3SdU8FELu7QIiNcpjnL-f3N-xGthuGEx1OMERML1JXB1_UeIgS_q96S8TsMaR2Djq51YJNany-d649J6c8XP7jofJ_uXIxTFn2yAwvj8DhZgQ79lLY-JDPxCD347yEpOwd9HJ7QQ6u7AVbXe4m-dtvPcp9WH--HclOlJuMkpgQzRg2VpMHjllZzglstBSOSgbXMtEUjbCOLFhvBtQUiaZFhnNNCYilskS_RYeZar0_qEtxZhx_ltVN_gQ9HpUN0pgOFcQYysxRbayhv2sYKLbVsBDeNldSMrHxmmclMgPafR7Ca_KvZv5r8q6v_sfUytxwA3DQE5gUj-S_WbYLx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CroSSHeteroFL: Cross-Stratified Sampling Composition-Fitting to Federated Learning for Heterogeneous Clients</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tinh, Vo Phuc ; Son, Hoang Hai ; Nam, Nguyen Hoang ; Dang, Duc Ngoc Minh ; Le, Duy-Dong ; Nguyen, Thai-Binh ; Pham, Thanh-Qui ; Nguyen, van-Luong ; Huynh, Duy-Thanh ; Khoa, Tran Anh</creator><creatorcontrib>Tinh, Vo Phuc ; Son, Hoang Hai ; Nam, Nguyen Hoang ; Dang, Duc Ngoc Minh ; Le, Duy-Dong ; Nguyen, Thai-Binh ; Pham, Thanh-Qui ; Nguyen, van-Luong ; Huynh, Duy-Thanh ; Khoa, Tran Anh</creatorcontrib><description>In the large-scale deployment of federated learning (FL) systems, the heterogeneity of clients, such as mobile phones and Internet of Things (IoT) devices with different configurations, constitutes a significant problem regarding fairness, training performance, and accuracy. Such system heterogeneity leads to an inevitable trade-off between model complexity and data accessibility as a bottleneck. To avoid this situation and to achieve resource-adaptive FL, we introduce CrossHeteroFL to deal with heterogeneous clients equipped with different computational and communication capabilities. Our solution enables the training of heterogeneous local models with additional computational complexity and still generates a single global inference model. We demonstrate several CrossHeteroFL training scenarios and conduct extensive empirical evaluation, covering four levels of the computational complexity of three-model architectures on two datasets. The proposed mechanism provides the system with non-elementary access to a scattered fit among clients. However, the proposed method generalizes soft handover-based solutions by adjusting the model width according to clients' capabilities and a tiered balance of data-source overviews to assess clients' interests accurately. The evaluation results indicate our method solves the challenges in previous studies and produces greater top-1 accuracy and consistent performance under heterogeneous client conditions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3475737</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; capability ; computation complexity ; Computational complexity ; Computational modeling ; Computer architecture ; Data models ; Federated learning ; heterogeneity ; Internet of Things ; Noise measurement ; resource-adaptive ; Servers ; Training</subject><ispartof>IEEE access, 2024, Vol.12, p.148011-148025</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-10554c491b0169da610fa975195edd5cf8b7db98f0c76ade19482003489097d83</cites><orcidid>0000-0002-7365-4078 ; 0000-0001-9302-3129 ; 0000-0003-4649-8417 ; 0000-0001-7987-6627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10706851$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Tinh, Vo Phuc</creatorcontrib><creatorcontrib>Son, Hoang Hai</creatorcontrib><creatorcontrib>Nam, Nguyen Hoang</creatorcontrib><creatorcontrib>Dang, Duc Ngoc Minh</creatorcontrib><creatorcontrib>Le, Duy-Dong</creatorcontrib><creatorcontrib>Nguyen, Thai-Binh</creatorcontrib><creatorcontrib>Pham, Thanh-Qui</creatorcontrib><creatorcontrib>Nguyen, van-Luong</creatorcontrib><creatorcontrib>Huynh, Duy-Thanh</creatorcontrib><creatorcontrib>Khoa, Tran Anh</creatorcontrib><title>CroSSHeteroFL: Cross-Stratified Sampling Composition-Fitting to Federated Learning for Heterogeneous Clients</title><title>IEEE access</title><addtitle>Access</addtitle><description>In the large-scale deployment of federated learning (FL) systems, the heterogeneity of clients, such as mobile phones and Internet of Things (IoT) devices with different configurations, constitutes a significant problem regarding fairness, training performance, and accuracy. Such system heterogeneity leads to an inevitable trade-off between model complexity and data accessibility as a bottleneck. To avoid this situation and to achieve resource-adaptive FL, we introduce CrossHeteroFL to deal with heterogeneous clients equipped with different computational and communication capabilities. Our solution enables the training of heterogeneous local models with additional computational complexity and still generates a single global inference model. We demonstrate several CrossHeteroFL training scenarios and conduct extensive empirical evaluation, covering four levels of the computational complexity of three-model architectures on two datasets. The proposed mechanism provides the system with non-elementary access to a scattered fit among clients. However, the proposed method generalizes soft handover-based solutions by adjusting the model width according to clients' capabilities and a tiered balance of data-source overviews to assess clients' interests accurately. The evaluation results indicate our method solves the challenges in previous studies and produces greater top-1 accuracy and consistent performance under heterogeneous client conditions.</description><subject>Adaptation models</subject><subject>capability</subject><subject>computation complexity</subject><subject>Computational complexity</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Data models</subject><subject>Federated learning</subject><subject>heterogeneity</subject><subject>Internet of Things</subject><subject>Noise measurement</subject><subject>resource-adaptive</subject><subject>Servers</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkF1LwzAUhoMoOOZ-gV70D3QmbT4a70bZ3KDgRfU6pMnpyOiakcYL_72tHbLcJHk578PhQeiZ4DUhWL5uynJb1-sMZ3SdU8FELu7QIiNcpjnL-f3N-xGthuGEx1OMERML1JXB1_UeIgS_q96S8TsMaR2Djq51YJNany-d649J6c8XP7jofJ_uXIxTFn2yAwvj8DhZgQ79lLY-JDPxCD347yEpOwd9HJ7QQ6u7AVbXe4m-dtvPcp9WH--HclOlJuMkpgQzRg2VpMHjllZzglstBSOSgbXMtEUjbCOLFhvBtQUiaZFhnNNCYilskS_RYeZar0_qEtxZhx_ltVN_gQ9HpUN0pgOFcQYysxRbayhv2sYKLbVsBDeNldSMrHxmmclMgPafR7Ca_KvZv5r8q6v_sfUytxwA3DQE5gUj-S_WbYLx</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Tinh, Vo Phuc</creator><creator>Son, Hoang Hai</creator><creator>Nam, Nguyen Hoang</creator><creator>Dang, Duc Ngoc Minh</creator><creator>Le, Duy-Dong</creator><creator>Nguyen, Thai-Binh</creator><creator>Pham, Thanh-Qui</creator><creator>Nguyen, van-Luong</creator><creator>Huynh, Duy-Thanh</creator><creator>Khoa, Tran Anh</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7365-4078</orcidid><orcidid>https://orcid.org/0000-0001-9302-3129</orcidid><orcidid>https://orcid.org/0000-0003-4649-8417</orcidid><orcidid>https://orcid.org/0000-0001-7987-6627</orcidid></search><sort><creationdate>2024</creationdate><title>CroSSHeteroFL: Cross-Stratified Sampling Composition-Fitting to Federated Learning for Heterogeneous Clients</title><author>Tinh, Vo Phuc ; Son, Hoang Hai ; Nam, Nguyen Hoang ; Dang, Duc Ngoc Minh ; Le, Duy-Dong ; Nguyen, Thai-Binh ; Pham, Thanh-Qui ; Nguyen, van-Luong ; Huynh, Duy-Thanh ; Khoa, Tran Anh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-10554c491b0169da610fa975195edd5cf8b7db98f0c76ade19482003489097d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>capability</topic><topic>computation complexity</topic><topic>Computational complexity</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Data models</topic><topic>Federated learning</topic><topic>heterogeneity</topic><topic>Internet of Things</topic><topic>Noise measurement</topic><topic>resource-adaptive</topic><topic>Servers</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tinh, Vo Phuc</creatorcontrib><creatorcontrib>Son, Hoang Hai</creatorcontrib><creatorcontrib>Nam, Nguyen Hoang</creatorcontrib><creatorcontrib>Dang, Duc Ngoc Minh</creatorcontrib><creatorcontrib>Le, Duy-Dong</creatorcontrib><creatorcontrib>Nguyen, Thai-Binh</creatorcontrib><creatorcontrib>Pham, Thanh-Qui</creatorcontrib><creatorcontrib>Nguyen, van-Luong</creatorcontrib><creatorcontrib>Huynh, Duy-Thanh</creatorcontrib><creatorcontrib>Khoa, Tran Anh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tinh, Vo Phuc</au><au>Son, Hoang Hai</au><au>Nam, Nguyen Hoang</au><au>Dang, Duc Ngoc Minh</au><au>Le, Duy-Dong</au><au>Nguyen, Thai-Binh</au><au>Pham, Thanh-Qui</au><au>Nguyen, van-Luong</au><au>Huynh, Duy-Thanh</au><au>Khoa, Tran Anh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CroSSHeteroFL: Cross-Stratified Sampling Composition-Fitting to Federated Learning for Heterogeneous Clients</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>148011</spage><epage>148025</epage><pages>148011-148025</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In the large-scale deployment of federated learning (FL) systems, the heterogeneity of clients, such as mobile phones and Internet of Things (IoT) devices with different configurations, constitutes a significant problem regarding fairness, training performance, and accuracy. Such system heterogeneity leads to an inevitable trade-off between model complexity and data accessibility as a bottleneck. To avoid this situation and to achieve resource-adaptive FL, we introduce CrossHeteroFL to deal with heterogeneous clients equipped with different computational and communication capabilities. Our solution enables the training of heterogeneous local models with additional computational complexity and still generates a single global inference model. We demonstrate several CrossHeteroFL training scenarios and conduct extensive empirical evaluation, covering four levels of the computational complexity of three-model architectures on two datasets. The proposed mechanism provides the system with non-elementary access to a scattered fit among clients. However, the proposed method generalizes soft handover-based solutions by adjusting the model width according to clients' capabilities and a tiered balance of data-source overviews to assess clients' interests accurately. The evaluation results indicate our method solves the challenges in previous studies and produces greater top-1 accuracy and consistent performance under heterogeneous client conditions.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3475737</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7365-4078</orcidid><orcidid>https://orcid.org/0000-0001-9302-3129</orcidid><orcidid>https://orcid.org/0000-0003-4649-8417</orcidid><orcidid>https://orcid.org/0000-0001-7987-6627</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.148011-148025 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2024_3475737 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adaptation models capability computation complexity Computational complexity Computational modeling Computer architecture Data models Federated learning heterogeneity Internet of Things Noise measurement resource-adaptive Servers Training |
title | CroSSHeteroFL: Cross-Stratified Sampling Composition-Fitting to Federated Learning for Heterogeneous Clients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T00%3A22%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CroSSHeteroFL:%20Cross-Stratified%20Sampling%20Composition-Fitting%20to%20Federated%20Learning%20for%20Heterogeneous%20Clients&rft.jtitle=IEEE%20access&rft.au=Tinh,%20Vo%20Phuc&rft.date=2024&rft.volume=12&rft.spage=148011&rft.epage=148025&rft.pages=148011-148025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3475737&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_002e92d40ddc46bfbd7a9a9b76cbd94c%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10706851&rft_doaj_id=oai_doaj_org_article_002e92d40ddc46bfbd7a9a9b76cbd94c&rfr_iscdi=true |