Integrating Multiscale Linear Attention and Focal Loss for Robust Pest Classification
Agricultural pests significantly impact crop yield and quality, threatening food security and causing economic losses. Therefore, the precise identification of pests is crucial for improving agricultural production. However, traditional pest classification methods struggle to capture the complex rel...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.146610-146619 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 146619 |
---|---|
container_issue | |
container_start_page | 146610 |
container_title | IEEE access |
container_volume | 12 |
creator | Zhao, Shulin Wang, Hai Liu, Tailian Huang, Shulai |
description | Agricultural pests significantly impact crop yield and quality, threatening food security and causing economic losses. Therefore, the precise identification of pests is crucial for improving agricultural production. However, traditional pest classification methods struggle to capture the complex relationships among different parts of pest images and often lack strong generalization capabilities, resulting in poor performance. To address these issues, we propose an agricultural pest classification model based on a multi-scale linear attention mechanism and Focal Loss. This model employs a multi-scale linear attention module to capture local features at various scales, as well as the long-distance dependencies and global relationships among these local features. It utilizes an attention mechanism with linear time complexity to ensure computational efficiency. In addition, we use the Focal Loss function to alleviate the impact of sample imbalance in the dataset and explore the effects of various data augmentation techniques on the model's generalization ability. Experimental results demonstrate that our model performs excellently across datasets of different scales. |
doi_str_mv | 10.1109/ACCESS.2024.3473536 |
format | Article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3473536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10704656</ieee_id><doaj_id>oai_doaj_org_article_3ba0bc7c4d7449b0b1e03fd58451bf74</doaj_id><sourcerecordid>oai_doaj_org_article_3ba0bc7c4d7449b0b1e03fd58451bf74</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-1c867186f37fa62c85ae32d0c0873a497593683585142be07e2f4f00e56d576e3</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIVNAvgIN_IMWOX8mxilqoVASi9Gw5zrpyFRJkuwf-noRUqHvYHc3ujLSD0AMlC0pJ-bSsqtVut8hJzheMKyaYvEKznMoyG_H1Bb5F8xiPZKhioISaof2mS3AIJvnugF9PbfLRmhbw1ndgAl6mBF3yfYdN1-B1P-zwto8Ruz7gj74-xYTfYWhVa2L0zlszXt-jG2faCPPzvEP79eqzesm2b8-barnNbC5pyqgtpKKFdEw5I3NbCAMsb4glhWKGl0qUTBZMFILyvAaiIHfcEQJCNkJJYHdoM_k2vTnq7-C_TPjRvfH6j-jDQZuQvG1Bs9qQ2irLG8V5WZOaAmGuEQUXtHaKD15s8rJheDCA-_ejRI9B6yloPQatz0EPqsdJ5QHgQqEIl0KyX-1xeUA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integrating Multiscale Linear Attention and Focal Loss for Robust Pest Classification</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhao, Shulin ; Wang, Hai ; Liu, Tailian ; Huang, Shulai</creator><creatorcontrib>Zhao, Shulin ; Wang, Hai ; Liu, Tailian ; Huang, Shulai</creatorcontrib><description>Agricultural pests significantly impact crop yield and quality, threatening food security and causing economic losses. Therefore, the precise identification of pests is crucial for improving agricultural production. However, traditional pest classification methods struggle to capture the complex relationships among different parts of pest images and often lack strong generalization capabilities, resulting in poor performance. To address these issues, we propose an agricultural pest classification model based on a multi-scale linear attention mechanism and Focal Loss. This model employs a multi-scale linear attention module to capture local features at various scales, as well as the long-distance dependencies and global relationships among these local features. It utilizes an attention mechanism with linear time complexity to ensure computational efficiency. In addition, we use the Focal Loss function to alleviate the impact of sample imbalance in the dataset and explore the effects of various data augmentation techniques on the model's generalization ability. Experimental results demonstrate that our model performs excellently across datasets of different scales.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3473536</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Attention mechanisms ; Computational efficiency ; Computational modeling ; Convolutional neural networks ; Crops ; data enhancement ; Data models ; Deep learning ; Feature extraction ; focal loss ; Multi-scale linear attention ; pest classification ; Pest control ; Support vector machines</subject><ispartof>IEEE access, 2024, Vol.12, p.146610-146619</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-1c867186f37fa62c85ae32d0c0873a497593683585142be07e2f4f00e56d576e3</cites><orcidid>0009-0007-9821-6502 ; 0000-0003-1882-3112 ; 0009-0008-1003-9044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10704656$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Zhao, Shulin</creatorcontrib><creatorcontrib>Wang, Hai</creatorcontrib><creatorcontrib>Liu, Tailian</creatorcontrib><creatorcontrib>Huang, Shulai</creatorcontrib><title>Integrating Multiscale Linear Attention and Focal Loss for Robust Pest Classification</title><title>IEEE access</title><addtitle>Access</addtitle><description>Agricultural pests significantly impact crop yield and quality, threatening food security and causing economic losses. Therefore, the precise identification of pests is crucial for improving agricultural production. However, traditional pest classification methods struggle to capture the complex relationships among different parts of pest images and often lack strong generalization capabilities, resulting in poor performance. To address these issues, we propose an agricultural pest classification model based on a multi-scale linear attention mechanism and Focal Loss. This model employs a multi-scale linear attention module to capture local features at various scales, as well as the long-distance dependencies and global relationships among these local features. It utilizes an attention mechanism with linear time complexity to ensure computational efficiency. In addition, we use the Focal Loss function to alleviate the impact of sample imbalance in the dataset and explore the effects of various data augmentation techniques on the model's generalization ability. Experimental results demonstrate that our model performs excellently across datasets of different scales.</description><subject>Attention mechanisms</subject><subject>Computational efficiency</subject><subject>Computational modeling</subject><subject>Convolutional neural networks</subject><subject>Crops</subject><subject>data enhancement</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>focal loss</subject><subject>Multi-scale linear attention</subject><subject>pest classification</subject><subject>Pest control</subject><subject>Support vector machines</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMtOwzAQtBBIVNAvgIN_IMWOX8mxilqoVASi9Gw5zrpyFRJkuwf-noRUqHvYHc3ujLSD0AMlC0pJ-bSsqtVut8hJzheMKyaYvEKznMoyG_H1Bb5F8xiPZKhioISaof2mS3AIJvnugF9PbfLRmhbw1ndgAl6mBF3yfYdN1-B1P-zwto8Ruz7gj74-xYTfYWhVa2L0zlszXt-jG2faCPPzvEP79eqzesm2b8-barnNbC5pyqgtpKKFdEw5I3NbCAMsb4glhWKGl0qUTBZMFILyvAaiIHfcEQJCNkJJYHdoM_k2vTnq7-C_TPjRvfH6j-jDQZuQvG1Bs9qQ2irLG8V5WZOaAmGuEQUXtHaKD15s8rJheDCA-_ejRI9B6yloPQatz0EPqsdJ5QHgQqEIl0KyX-1xeUA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zhao, Shulin</creator><creator>Wang, Hai</creator><creator>Liu, Tailian</creator><creator>Huang, Shulai</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0007-9821-6502</orcidid><orcidid>https://orcid.org/0000-0003-1882-3112</orcidid><orcidid>https://orcid.org/0009-0008-1003-9044</orcidid></search><sort><creationdate>2024</creationdate><title>Integrating Multiscale Linear Attention and Focal Loss for Robust Pest Classification</title><author>Zhao, Shulin ; Wang, Hai ; Liu, Tailian ; Huang, Shulai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-1c867186f37fa62c85ae32d0c0873a497593683585142be07e2f4f00e56d576e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Attention mechanisms</topic><topic>Computational efficiency</topic><topic>Computational modeling</topic><topic>Convolutional neural networks</topic><topic>Crops</topic><topic>data enhancement</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>focal loss</topic><topic>Multi-scale linear attention</topic><topic>pest classification</topic><topic>Pest control</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Shulin</creatorcontrib><creatorcontrib>Wang, Hai</creatorcontrib><creatorcontrib>Liu, Tailian</creatorcontrib><creatorcontrib>Huang, Shulai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Shulin</au><au>Wang, Hai</au><au>Liu, Tailian</au><au>Huang, Shulai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating Multiscale Linear Attention and Focal Loss for Robust Pest Classification</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>146610</spage><epage>146619</epage><pages>146610-146619</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Agricultural pests significantly impact crop yield and quality, threatening food security and causing economic losses. Therefore, the precise identification of pests is crucial for improving agricultural production. However, traditional pest classification methods struggle to capture the complex relationships among different parts of pest images and often lack strong generalization capabilities, resulting in poor performance. To address these issues, we propose an agricultural pest classification model based on a multi-scale linear attention mechanism and Focal Loss. This model employs a multi-scale linear attention module to capture local features at various scales, as well as the long-distance dependencies and global relationships among these local features. It utilizes an attention mechanism with linear time complexity to ensure computational efficiency. In addition, we use the Focal Loss function to alleviate the impact of sample imbalance in the dataset and explore the effects of various data augmentation techniques on the model's generalization ability. Experimental results demonstrate that our model performs excellently across datasets of different scales.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3473536</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0007-9821-6502</orcidid><orcidid>https://orcid.org/0000-0003-1882-3112</orcidid><orcidid>https://orcid.org/0009-0008-1003-9044</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.146610-146619 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2024_3473536 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Attention mechanisms Computational efficiency Computational modeling Convolutional neural networks Crops data enhancement Data models Deep learning Feature extraction focal loss Multi-scale linear attention pest classification Pest control Support vector machines |
title | Integrating Multiscale Linear Attention and Focal Loss for Robust Pest Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20Multiscale%20Linear%20Attention%20and%20Focal%20Loss%20for%20Robust%20Pest%20Classification&rft.jtitle=IEEE%20access&rft.au=Zhao,%20Shulin&rft.date=2024&rft.volume=12&rft.spage=146610&rft.epage=146619&rft.pages=146610-146619&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3473536&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_3ba0bc7c4d7449b0b1e03fd58451bf74%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10704656&rft_doaj_id=oai_doaj_org_article_3ba0bc7c4d7449b0b1e03fd58451bf74&rfr_iscdi=true |