Integrating Multiscale Linear Attention and Focal Loss for Robust Pest Classification

Agricultural pests significantly impact crop yield and quality, threatening food security and causing economic losses. Therefore, the precise identification of pests is crucial for improving agricultural production. However, traditional pest classification methods struggle to capture the complex rel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.146610-146619
Hauptverfasser: Zhao, Shulin, Wang, Hai, Liu, Tailian, Huang, Shulai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 146619
container_issue
container_start_page 146610
container_title IEEE access
container_volume 12
creator Zhao, Shulin
Wang, Hai
Liu, Tailian
Huang, Shulai
description Agricultural pests significantly impact crop yield and quality, threatening food security and causing economic losses. Therefore, the precise identification of pests is crucial for improving agricultural production. However, traditional pest classification methods struggle to capture the complex relationships among different parts of pest images and often lack strong generalization capabilities, resulting in poor performance. To address these issues, we propose an agricultural pest classification model based on a multi-scale linear attention mechanism and Focal Loss. This model employs a multi-scale linear attention module to capture local features at various scales, as well as the long-distance dependencies and global relationships among these local features. It utilizes an attention mechanism with linear time complexity to ensure computational efficiency. In addition, we use the Focal Loss function to alleviate the impact of sample imbalance in the dataset and explore the effects of various data augmentation techniques on the model's generalization ability. Experimental results demonstrate that our model performs excellently across datasets of different scales.
doi_str_mv 10.1109/ACCESS.2024.3473536
format Article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3473536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10704656</ieee_id><doaj_id>oai_doaj_org_article_3ba0bc7c4d7449b0b1e03fd58451bf74</doaj_id><sourcerecordid>oai_doaj_org_article_3ba0bc7c4d7449b0b1e03fd58451bf74</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-1c867186f37fa62c85ae32d0c0873a497593683585142be07e2f4f00e56d576e3</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIVNAvgIN_IMWOX8mxilqoVASi9Gw5zrpyFRJkuwf-noRUqHvYHc3ujLSD0AMlC0pJ-bSsqtVut8hJzheMKyaYvEKznMoyG_H1Bb5F8xiPZKhioISaof2mS3AIJvnugF9PbfLRmhbw1ndgAl6mBF3yfYdN1-B1P-zwto8Ruz7gj74-xYTfYWhVa2L0zlszXt-jG2faCPPzvEP79eqzesm2b8-barnNbC5pyqgtpKKFdEw5I3NbCAMsb4glhWKGl0qUTBZMFILyvAaiIHfcEQJCNkJJYHdoM_k2vTnq7-C_TPjRvfH6j-jDQZuQvG1Bs9qQ2irLG8V5WZOaAmGuEQUXtHaKD15s8rJheDCA-_ejRI9B6yloPQatz0EPqsdJ5QHgQqEIl0KyX-1xeUA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integrating Multiscale Linear Attention and Focal Loss for Robust Pest Classification</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhao, Shulin ; Wang, Hai ; Liu, Tailian ; Huang, Shulai</creator><creatorcontrib>Zhao, Shulin ; Wang, Hai ; Liu, Tailian ; Huang, Shulai</creatorcontrib><description>Agricultural pests significantly impact crop yield and quality, threatening food security and causing economic losses. Therefore, the precise identification of pests is crucial for improving agricultural production. However, traditional pest classification methods struggle to capture the complex relationships among different parts of pest images and often lack strong generalization capabilities, resulting in poor performance. To address these issues, we propose an agricultural pest classification model based on a multi-scale linear attention mechanism and Focal Loss. This model employs a multi-scale linear attention module to capture local features at various scales, as well as the long-distance dependencies and global relationships among these local features. It utilizes an attention mechanism with linear time complexity to ensure computational efficiency. In addition, we use the Focal Loss function to alleviate the impact of sample imbalance in the dataset and explore the effects of various data augmentation techniques on the model's generalization ability. Experimental results demonstrate that our model performs excellently across datasets of different scales.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3473536</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Attention mechanisms ; Computational efficiency ; Computational modeling ; Convolutional neural networks ; Crops ; data enhancement ; Data models ; Deep learning ; Feature extraction ; focal loss ; Multi-scale linear attention ; pest classification ; Pest control ; Support vector machines</subject><ispartof>IEEE access, 2024, Vol.12, p.146610-146619</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-1c867186f37fa62c85ae32d0c0873a497593683585142be07e2f4f00e56d576e3</cites><orcidid>0009-0007-9821-6502 ; 0000-0003-1882-3112 ; 0009-0008-1003-9044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10704656$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Zhao, Shulin</creatorcontrib><creatorcontrib>Wang, Hai</creatorcontrib><creatorcontrib>Liu, Tailian</creatorcontrib><creatorcontrib>Huang, Shulai</creatorcontrib><title>Integrating Multiscale Linear Attention and Focal Loss for Robust Pest Classification</title><title>IEEE access</title><addtitle>Access</addtitle><description>Agricultural pests significantly impact crop yield and quality, threatening food security and causing economic losses. Therefore, the precise identification of pests is crucial for improving agricultural production. However, traditional pest classification methods struggle to capture the complex relationships among different parts of pest images and often lack strong generalization capabilities, resulting in poor performance. To address these issues, we propose an agricultural pest classification model based on a multi-scale linear attention mechanism and Focal Loss. This model employs a multi-scale linear attention module to capture local features at various scales, as well as the long-distance dependencies and global relationships among these local features. It utilizes an attention mechanism with linear time complexity to ensure computational efficiency. In addition, we use the Focal Loss function to alleviate the impact of sample imbalance in the dataset and explore the effects of various data augmentation techniques on the model's generalization ability. Experimental results demonstrate that our model performs excellently across datasets of different scales.</description><subject>Attention mechanisms</subject><subject>Computational efficiency</subject><subject>Computational modeling</subject><subject>Convolutional neural networks</subject><subject>Crops</subject><subject>data enhancement</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>focal loss</subject><subject>Multi-scale linear attention</subject><subject>pest classification</subject><subject>Pest control</subject><subject>Support vector machines</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMtOwzAQtBBIVNAvgIN_IMWOX8mxilqoVASi9Gw5zrpyFRJkuwf-noRUqHvYHc3ujLSD0AMlC0pJ-bSsqtVut8hJzheMKyaYvEKznMoyG_H1Bb5F8xiPZKhioISaof2mS3AIJvnugF9PbfLRmhbw1ndgAl6mBF3yfYdN1-B1P-zwto8Ruz7gj74-xYTfYWhVa2L0zlszXt-jG2faCPPzvEP79eqzesm2b8-barnNbC5pyqgtpKKFdEw5I3NbCAMsb4glhWKGl0qUTBZMFILyvAaiIHfcEQJCNkJJYHdoM_k2vTnq7-C_TPjRvfH6j-jDQZuQvG1Bs9qQ2irLG8V5WZOaAmGuEQUXtHaKD15s8rJheDCA-_ejRI9B6yloPQatz0EPqsdJ5QHgQqEIl0KyX-1xeUA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zhao, Shulin</creator><creator>Wang, Hai</creator><creator>Liu, Tailian</creator><creator>Huang, Shulai</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0007-9821-6502</orcidid><orcidid>https://orcid.org/0000-0003-1882-3112</orcidid><orcidid>https://orcid.org/0009-0008-1003-9044</orcidid></search><sort><creationdate>2024</creationdate><title>Integrating Multiscale Linear Attention and Focal Loss for Robust Pest Classification</title><author>Zhao, Shulin ; Wang, Hai ; Liu, Tailian ; Huang, Shulai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-1c867186f37fa62c85ae32d0c0873a497593683585142be07e2f4f00e56d576e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Attention mechanisms</topic><topic>Computational efficiency</topic><topic>Computational modeling</topic><topic>Convolutional neural networks</topic><topic>Crops</topic><topic>data enhancement</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>focal loss</topic><topic>Multi-scale linear attention</topic><topic>pest classification</topic><topic>Pest control</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Shulin</creatorcontrib><creatorcontrib>Wang, Hai</creatorcontrib><creatorcontrib>Liu, Tailian</creatorcontrib><creatorcontrib>Huang, Shulai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Shulin</au><au>Wang, Hai</au><au>Liu, Tailian</au><au>Huang, Shulai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating Multiscale Linear Attention and Focal Loss for Robust Pest Classification</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>146610</spage><epage>146619</epage><pages>146610-146619</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Agricultural pests significantly impact crop yield and quality, threatening food security and causing economic losses. Therefore, the precise identification of pests is crucial for improving agricultural production. However, traditional pest classification methods struggle to capture the complex relationships among different parts of pest images and often lack strong generalization capabilities, resulting in poor performance. To address these issues, we propose an agricultural pest classification model based on a multi-scale linear attention mechanism and Focal Loss. This model employs a multi-scale linear attention module to capture local features at various scales, as well as the long-distance dependencies and global relationships among these local features. It utilizes an attention mechanism with linear time complexity to ensure computational efficiency. In addition, we use the Focal Loss function to alleviate the impact of sample imbalance in the dataset and explore the effects of various data augmentation techniques on the model's generalization ability. Experimental results demonstrate that our model performs excellently across datasets of different scales.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3473536</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0007-9821-6502</orcidid><orcidid>https://orcid.org/0000-0003-1882-3112</orcidid><orcidid>https://orcid.org/0009-0008-1003-9044</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.146610-146619
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3473536
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Attention mechanisms
Computational efficiency
Computational modeling
Convolutional neural networks
Crops
data enhancement
Data models
Deep learning
Feature extraction
focal loss
Multi-scale linear attention
pest classification
Pest control
Support vector machines
title Integrating Multiscale Linear Attention and Focal Loss for Robust Pest Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20Multiscale%20Linear%20Attention%20and%20Focal%20Loss%20for%20Robust%20Pest%20Classification&rft.jtitle=IEEE%20access&rft.au=Zhao,%20Shulin&rft.date=2024&rft.volume=12&rft.spage=146610&rft.epage=146619&rft.pages=146610-146619&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3473536&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_3ba0bc7c4d7449b0b1e03fd58451bf74%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10704656&rft_doaj_id=oai_doaj_org_article_3ba0bc7c4d7449b0b1e03fd58451bf74&rfr_iscdi=true