DRL-Enabled Hierarchical Federated Learning Optimization for Data Heterogeneity Management in Multi-Access Edge Computing
This paper designs a novel Hierarchical Federated Learning (HFL) management scheme, enabled by deep reinforcement learning (DRL), for multi-access edge computing (MEC) environments to accelerate convergence. To do this, the proposed scheme controls the number of local updates performed by mobile dev...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.147209-147219 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 147219 |
---|---|
container_issue | |
container_start_page | 147209 |
container_title | IEEE access |
container_volume | 12 |
creator | Cho, Suhyun Lim, Sunhwan Lee, Joohyung |
description | This paper designs a novel Hierarchical Federated Learning (HFL) management scheme, enabled by deep reinforcement learning (DRL), for multi-access edge computing (MEC) environments to accelerate convergence. To do this, the proposed scheme controls the number of local updates performed by mobile devices (MDs) and the number of intermediate aggregations at the MEC server before data is transmitted to the cloud for global aggregation. This optimization aims to i) mitigate the straggler effect by balancing training times between MEC and cloud servers, and ii) reduce the risk of overfitting by avoiding excessive reliance on faster MDs. Additionally, to improve the efficiency of DRL, Bayesian optimization is employed to initialize action values, thereby avoiding inefficient exploration of actions. Extensive simulations demonstrate that our proposed scheme outperforms various benchmarks in terms of test accuracy and training time. |
doi_str_mv | 10.1109/ACCESS.2024.3473008 |
format | Article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3473008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10704611</ieee_id><doaj_id>oai_doaj_org_article_1f03a7147ab048529adb57db322fc677</doaj_id><sourcerecordid>oai_doaj_org_article_1f03a7147ab048529adb57db322fc677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-3f4692e392c01dec0278d3796c0366adacb11df1d98f6f76a89853b8ad1b70d73</originalsourceid><addsrcrecordid>eNpNkctOwzAQRSMEEhX0C2DhH0jxI7GTZRUKRWpVicLamtjj4CpNKscsyteTUoSYzcxc6Z7NSZI7RmeM0fJhXlWL7XbGKc9mIlOC0uIimXAmy1TkQl7-u6-T6TDs6DjFGOVqkhwfX1fpooO6RUuWHgME8-ENtOQJ7fjFMV4hhM53Ddkcot_7L4i-74jrA3mECGSJEUPfYIc-HskaOmhwj10kviPrzzb6dG4MDgNZ2AZJ1e8Pn3Gk3SZXDtoBp7_7Jnl_WrxVy3S1eX6p5qvUcMliKlwmS46i5IYyi4ZyVVihSmmokBIsmJox65gtCyedklCURS7qAiyrFbVK3CQvZ67tYacPwe8hHHUPXv8EfWg0hOhNi5o5KkCxTEFNsyLnJdg6V7YWnDsj1YklziwT-mEI6P54jOqTDH2WoU8y9K-MsXV_bnlE_NdQNJOMiW_reYa-</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DRL-Enabled Hierarchical Federated Learning Optimization for Data Heterogeneity Management in Multi-Access Edge Computing</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Cho, Suhyun ; Lim, Sunhwan ; Lee, Joohyung</creator><creatorcontrib>Cho, Suhyun ; Lim, Sunhwan ; Lee, Joohyung</creatorcontrib><description>This paper designs a novel Hierarchical Federated Learning (HFL) management scheme, enabled by deep reinforcement learning (DRL), for multi-access edge computing (MEC) environments to accelerate convergence. To do this, the proposed scheme controls the number of local updates performed by mobile devices (MDs) and the number of intermediate aggregations at the MEC server before data is transmitted to the cloud for global aggregation. This optimization aims to i) mitigate the straggler effect by balancing training times between MEC and cloud servers, and ii) reduce the risk of overfitting by avoiding excessive reliance on faster MDs. Additionally, to improve the efficiency of DRL, Bayesian optimization is employed to initialize action values, thereby avoiding inefficient exploration of actions. Extensive simulations demonstrate that our proposed scheme outperforms various benchmarks in terms of test accuracy and training time.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3473008</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Adaptation models ; Computational modeling ; Convergence ; Deep reinforcement learning ; Degradation ; Edge computing ; Federated learning ; Hierarchical federated learning ; multi-access edge computing ; Optimization ; Performance evaluation ; Servers ; Training</subject><ispartof>IEEE access, 2024, Vol.12, p.147209-147219</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-3f4692e392c01dec0278d3796c0366adacb11df1d98f6f76a89853b8ad1b70d73</cites><orcidid>0000-0003-1102-3905 ; 0009-0007-2485-5096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10704611$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Cho, Suhyun</creatorcontrib><creatorcontrib>Lim, Sunhwan</creatorcontrib><creatorcontrib>Lee, Joohyung</creatorcontrib><title>DRL-Enabled Hierarchical Federated Learning Optimization for Data Heterogeneity Management in Multi-Access Edge Computing</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper designs a novel Hierarchical Federated Learning (HFL) management scheme, enabled by deep reinforcement learning (DRL), for multi-access edge computing (MEC) environments to accelerate convergence. To do this, the proposed scheme controls the number of local updates performed by mobile devices (MDs) and the number of intermediate aggregations at the MEC server before data is transmitted to the cloud for global aggregation. This optimization aims to i) mitigate the straggler effect by balancing training times between MEC and cloud servers, and ii) reduce the risk of overfitting by avoiding excessive reliance on faster MDs. Additionally, to improve the efficiency of DRL, Bayesian optimization is employed to initialize action values, thereby avoiding inefficient exploration of actions. Extensive simulations demonstrate that our proposed scheme outperforms various benchmarks in terms of test accuracy and training time.</description><subject>Accuracy</subject><subject>Adaptation models</subject><subject>Computational modeling</subject><subject>Convergence</subject><subject>Deep reinforcement learning</subject><subject>Degradation</subject><subject>Edge computing</subject><subject>Federated learning</subject><subject>Hierarchical federated learning</subject><subject>multi-access edge computing</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Servers</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkctOwzAQRSMEEhX0C2DhH0jxI7GTZRUKRWpVicLamtjj4CpNKscsyteTUoSYzcxc6Z7NSZI7RmeM0fJhXlWL7XbGKc9mIlOC0uIimXAmy1TkQl7-u6-T6TDs6DjFGOVqkhwfX1fpooO6RUuWHgME8-ENtOQJ7fjFMV4hhM53Ddkcot_7L4i-74jrA3mECGSJEUPfYIc-HskaOmhwj10kviPrzzb6dG4MDgNZ2AZJ1e8Pn3Gk3SZXDtoBp7_7Jnl_WrxVy3S1eX6p5qvUcMliKlwmS46i5IYyi4ZyVVihSmmokBIsmJox65gtCyedklCURS7qAiyrFbVK3CQvZ67tYacPwe8hHHUPXv8EfWg0hOhNi5o5KkCxTEFNsyLnJdg6V7YWnDsj1YklziwT-mEI6P54jOqTDH2WoU8y9K-MsXV_bnlE_NdQNJOMiW_reYa-</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Cho, Suhyun</creator><creator>Lim, Sunhwan</creator><creator>Lee, Joohyung</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1102-3905</orcidid><orcidid>https://orcid.org/0009-0007-2485-5096</orcidid></search><sort><creationdate>2024</creationdate><title>DRL-Enabled Hierarchical Federated Learning Optimization for Data Heterogeneity Management in Multi-Access Edge Computing</title><author>Cho, Suhyun ; Lim, Sunhwan ; Lee, Joohyung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-3f4692e392c01dec0278d3796c0366adacb11df1d98f6f76a89853b8ad1b70d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Adaptation models</topic><topic>Computational modeling</topic><topic>Convergence</topic><topic>Deep reinforcement learning</topic><topic>Degradation</topic><topic>Edge computing</topic><topic>Federated learning</topic><topic>Hierarchical federated learning</topic><topic>multi-access edge computing</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Servers</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Suhyun</creatorcontrib><creatorcontrib>Lim, Sunhwan</creatorcontrib><creatorcontrib>Lee, Joohyung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Suhyun</au><au>Lim, Sunhwan</au><au>Lee, Joohyung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DRL-Enabled Hierarchical Federated Learning Optimization for Data Heterogeneity Management in Multi-Access Edge Computing</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>147209</spage><epage>147219</epage><pages>147209-147219</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper designs a novel Hierarchical Federated Learning (HFL) management scheme, enabled by deep reinforcement learning (DRL), for multi-access edge computing (MEC) environments to accelerate convergence. To do this, the proposed scheme controls the number of local updates performed by mobile devices (MDs) and the number of intermediate aggregations at the MEC server before data is transmitted to the cloud for global aggregation. This optimization aims to i) mitigate the straggler effect by balancing training times between MEC and cloud servers, and ii) reduce the risk of overfitting by avoiding excessive reliance on faster MDs. Additionally, to improve the efficiency of DRL, Bayesian optimization is employed to initialize action values, thereby avoiding inefficient exploration of actions. Extensive simulations demonstrate that our proposed scheme outperforms various benchmarks in terms of test accuracy and training time.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3473008</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1102-3905</orcidid><orcidid>https://orcid.org/0009-0007-2485-5096</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.147209-147219 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2024_3473008 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Adaptation models Computational modeling Convergence Deep reinforcement learning Degradation Edge computing Federated learning Hierarchical federated learning multi-access edge computing Optimization Performance evaluation Servers Training |
title | DRL-Enabled Hierarchical Federated Learning Optimization for Data Heterogeneity Management in Multi-Access Edge Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A41%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DRL-Enabled%20Hierarchical%20Federated%20Learning%20Optimization%20for%20Data%20Heterogeneity%20Management%20in%20Multi-Access%20Edge%20Computing&rft.jtitle=IEEE%20access&rft.au=Cho,%20Suhyun&rft.date=2024&rft.volume=12&rft.spage=147209&rft.epage=147219&rft.pages=147209-147219&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3473008&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_1f03a7147ab048529adb57db322fc677%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10704611&rft_doaj_id=oai_doaj_org_article_1f03a7147ab048529adb57db322fc677&rfr_iscdi=true |