DRL-Enabled Hierarchical Federated Learning Optimization for Data Heterogeneity Management in Multi-Access Edge Computing

This paper designs a novel Hierarchical Federated Learning (HFL) management scheme, enabled by deep reinforcement learning (DRL), for multi-access edge computing (MEC) environments to accelerate convergence. To do this, the proposed scheme controls the number of local updates performed by mobile dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.147209-147219
Hauptverfasser: Cho, Suhyun, Lim, Sunhwan, Lee, Joohyung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 147219
container_issue
container_start_page 147209
container_title IEEE access
container_volume 12
creator Cho, Suhyun
Lim, Sunhwan
Lee, Joohyung
description This paper designs a novel Hierarchical Federated Learning (HFL) management scheme, enabled by deep reinforcement learning (DRL), for multi-access edge computing (MEC) environments to accelerate convergence. To do this, the proposed scheme controls the number of local updates performed by mobile devices (MDs) and the number of intermediate aggregations at the MEC server before data is transmitted to the cloud for global aggregation. This optimization aims to i) mitigate the straggler effect by balancing training times between MEC and cloud servers, and ii) reduce the risk of overfitting by avoiding excessive reliance on faster MDs. Additionally, to improve the efficiency of DRL, Bayesian optimization is employed to initialize action values, thereby avoiding inefficient exploration of actions. Extensive simulations demonstrate that our proposed scheme outperforms various benchmarks in terms of test accuracy and training time.
doi_str_mv 10.1109/ACCESS.2024.3473008
format Article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3473008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10704611</ieee_id><doaj_id>oai_doaj_org_article_1f03a7147ab048529adb57db322fc677</doaj_id><sourcerecordid>oai_doaj_org_article_1f03a7147ab048529adb57db322fc677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-3f4692e392c01dec0278d3796c0366adacb11df1d98f6f76a89853b8ad1b70d73</originalsourceid><addsrcrecordid>eNpNkctOwzAQRSMEEhX0C2DhH0jxI7GTZRUKRWpVicLamtjj4CpNKscsyteTUoSYzcxc6Z7NSZI7RmeM0fJhXlWL7XbGKc9mIlOC0uIimXAmy1TkQl7-u6-T6TDs6DjFGOVqkhwfX1fpooO6RUuWHgME8-ENtOQJ7fjFMV4hhM53Ddkcot_7L4i-74jrA3mECGSJEUPfYIc-HskaOmhwj10kviPrzzb6dG4MDgNZ2AZJ1e8Pn3Gk3SZXDtoBp7_7Jnl_WrxVy3S1eX6p5qvUcMliKlwmS46i5IYyi4ZyVVihSmmokBIsmJox65gtCyedklCURS7qAiyrFbVK3CQvZ67tYacPwe8hHHUPXv8EfWg0hOhNi5o5KkCxTEFNsyLnJdg6V7YWnDsj1YklziwT-mEI6P54jOqTDH2WoU8y9K-MsXV_bnlE_NdQNJOMiW_reYa-</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DRL-Enabled Hierarchical Federated Learning Optimization for Data Heterogeneity Management in Multi-Access Edge Computing</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Cho, Suhyun ; Lim, Sunhwan ; Lee, Joohyung</creator><creatorcontrib>Cho, Suhyun ; Lim, Sunhwan ; Lee, Joohyung</creatorcontrib><description>This paper designs a novel Hierarchical Federated Learning (HFL) management scheme, enabled by deep reinforcement learning (DRL), for multi-access edge computing (MEC) environments to accelerate convergence. To do this, the proposed scheme controls the number of local updates performed by mobile devices (MDs) and the number of intermediate aggregations at the MEC server before data is transmitted to the cloud for global aggregation. This optimization aims to i) mitigate the straggler effect by balancing training times between MEC and cloud servers, and ii) reduce the risk of overfitting by avoiding excessive reliance on faster MDs. Additionally, to improve the efficiency of DRL, Bayesian optimization is employed to initialize action values, thereby avoiding inefficient exploration of actions. Extensive simulations demonstrate that our proposed scheme outperforms various benchmarks in terms of test accuracy and training time.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3473008</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Adaptation models ; Computational modeling ; Convergence ; Deep reinforcement learning ; Degradation ; Edge computing ; Federated learning ; Hierarchical federated learning ; multi-access edge computing ; Optimization ; Performance evaluation ; Servers ; Training</subject><ispartof>IEEE access, 2024, Vol.12, p.147209-147219</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-3f4692e392c01dec0278d3796c0366adacb11df1d98f6f76a89853b8ad1b70d73</cites><orcidid>0000-0003-1102-3905 ; 0009-0007-2485-5096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10704611$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Cho, Suhyun</creatorcontrib><creatorcontrib>Lim, Sunhwan</creatorcontrib><creatorcontrib>Lee, Joohyung</creatorcontrib><title>DRL-Enabled Hierarchical Federated Learning Optimization for Data Heterogeneity Management in Multi-Access Edge Computing</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper designs a novel Hierarchical Federated Learning (HFL) management scheme, enabled by deep reinforcement learning (DRL), for multi-access edge computing (MEC) environments to accelerate convergence. To do this, the proposed scheme controls the number of local updates performed by mobile devices (MDs) and the number of intermediate aggregations at the MEC server before data is transmitted to the cloud for global aggregation. This optimization aims to i) mitigate the straggler effect by balancing training times between MEC and cloud servers, and ii) reduce the risk of overfitting by avoiding excessive reliance on faster MDs. Additionally, to improve the efficiency of DRL, Bayesian optimization is employed to initialize action values, thereby avoiding inefficient exploration of actions. Extensive simulations demonstrate that our proposed scheme outperforms various benchmarks in terms of test accuracy and training time.</description><subject>Accuracy</subject><subject>Adaptation models</subject><subject>Computational modeling</subject><subject>Convergence</subject><subject>Deep reinforcement learning</subject><subject>Degradation</subject><subject>Edge computing</subject><subject>Federated learning</subject><subject>Hierarchical federated learning</subject><subject>multi-access edge computing</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Servers</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkctOwzAQRSMEEhX0C2DhH0jxI7GTZRUKRWpVicLamtjj4CpNKscsyteTUoSYzcxc6Z7NSZI7RmeM0fJhXlWL7XbGKc9mIlOC0uIimXAmy1TkQl7-u6-T6TDs6DjFGOVqkhwfX1fpooO6RUuWHgME8-ENtOQJ7fjFMV4hhM53Ddkcot_7L4i-74jrA3mECGSJEUPfYIc-HskaOmhwj10kviPrzzb6dG4MDgNZ2AZJ1e8Pn3Gk3SZXDtoBp7_7Jnl_WrxVy3S1eX6p5qvUcMliKlwmS46i5IYyi4ZyVVihSmmokBIsmJox65gtCyedklCURS7qAiyrFbVK3CQvZ67tYacPwe8hHHUPXv8EfWg0hOhNi5o5KkCxTEFNsyLnJdg6V7YWnDsj1YklziwT-mEI6P54jOqTDH2WoU8y9K-MsXV_bnlE_NdQNJOMiW_reYa-</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Cho, Suhyun</creator><creator>Lim, Sunhwan</creator><creator>Lee, Joohyung</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1102-3905</orcidid><orcidid>https://orcid.org/0009-0007-2485-5096</orcidid></search><sort><creationdate>2024</creationdate><title>DRL-Enabled Hierarchical Federated Learning Optimization for Data Heterogeneity Management in Multi-Access Edge Computing</title><author>Cho, Suhyun ; Lim, Sunhwan ; Lee, Joohyung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-3f4692e392c01dec0278d3796c0366adacb11df1d98f6f76a89853b8ad1b70d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Adaptation models</topic><topic>Computational modeling</topic><topic>Convergence</topic><topic>Deep reinforcement learning</topic><topic>Degradation</topic><topic>Edge computing</topic><topic>Federated learning</topic><topic>Hierarchical federated learning</topic><topic>multi-access edge computing</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Servers</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Suhyun</creatorcontrib><creatorcontrib>Lim, Sunhwan</creatorcontrib><creatorcontrib>Lee, Joohyung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Suhyun</au><au>Lim, Sunhwan</au><au>Lee, Joohyung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DRL-Enabled Hierarchical Federated Learning Optimization for Data Heterogeneity Management in Multi-Access Edge Computing</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>147209</spage><epage>147219</epage><pages>147209-147219</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper designs a novel Hierarchical Federated Learning (HFL) management scheme, enabled by deep reinforcement learning (DRL), for multi-access edge computing (MEC) environments to accelerate convergence. To do this, the proposed scheme controls the number of local updates performed by mobile devices (MDs) and the number of intermediate aggregations at the MEC server before data is transmitted to the cloud for global aggregation. This optimization aims to i) mitigate the straggler effect by balancing training times between MEC and cloud servers, and ii) reduce the risk of overfitting by avoiding excessive reliance on faster MDs. Additionally, to improve the efficiency of DRL, Bayesian optimization is employed to initialize action values, thereby avoiding inefficient exploration of actions. Extensive simulations demonstrate that our proposed scheme outperforms various benchmarks in terms of test accuracy and training time.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3473008</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1102-3905</orcidid><orcidid>https://orcid.org/0009-0007-2485-5096</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.147209-147219
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3473008
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Adaptation models
Computational modeling
Convergence
Deep reinforcement learning
Degradation
Edge computing
Federated learning
Hierarchical federated learning
multi-access edge computing
Optimization
Performance evaluation
Servers
Training
title DRL-Enabled Hierarchical Federated Learning Optimization for Data Heterogeneity Management in Multi-Access Edge Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A41%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DRL-Enabled%20Hierarchical%20Federated%20Learning%20Optimization%20for%20Data%20Heterogeneity%20Management%20in%20Multi-Access%20Edge%20Computing&rft.jtitle=IEEE%20access&rft.au=Cho,%20Suhyun&rft.date=2024&rft.volume=12&rft.spage=147209&rft.epage=147219&rft.pages=147209-147219&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3473008&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_1f03a7147ab048529adb57db322fc677%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10704611&rft_doaj_id=oai_doaj_org_article_1f03a7147ab048529adb57db322fc677&rfr_iscdi=true