Progressive Ensemble Learning for in-Sample Data Cleaning

We present an ensemble learning-based data cleaning approach (touted as ELDC) capable of identifying and pruning anomaly data. ELDC is characterized in that an ensemble of base models can be trained directly with the noisy in-sample data and can dynamically provide clean data during the iterative tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.140643-140659
Hauptverfasser: Wang, Jung-Hua, Lee, Shih-Kai, Wang, Ting-Yuan, Chen, Ming-Jer, Hsu, Shu-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 140659
container_issue
container_start_page 140643
container_title IEEE access
container_volume 12
creator Wang, Jung-Hua
Lee, Shih-Kai
Wang, Ting-Yuan
Chen, Ming-Jer
Hsu, Shu-Wei
description We present an ensemble learning-based data cleaning approach (touted as ELDC) capable of identifying and pruning anomaly data. ELDC is characterized in that an ensemble of base models can be trained directly with the noisy in-sample data and can dynamically provide clean data during the iterative training. Each base model uses a random subset of the target dataset that may initially contain up to 40% of label errors. Following each training iteration, anomaly data are discriminated against clean ones by a majority voting scheme, and three different types of anomaly (mislabeled, confusing, and outliers) can be identified using a statistical pattern jointly determined by the prediction output of the base models. By iterating such a cycle of train-vote-remove, noisy in-sample data are progressively removed until a prespecified condition is reached. Comprehensive experiments, including out-sample data tests, are conducted to verify the effectiveness of ELDC in simultaneously suppressing bias and variance of the prediction output. The ELDC framework is highly flexible as it is not bound to a specific model and allows different transfer-learning configurations. Neural networks of AlexNet, ResNet50, and GoogleNet are used as based models and trained with various benchmark datasets, the results show that ELDC outperforms state-of-the-art cleaning methods.
doi_str_mv 10.1109/ACCESS.2024.3468035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3468035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10693472</ieee_id><doaj_id>oai_doaj_org_article_7e4c9f38266b4fc7ac50bdf76a2f947d</doaj_id><sourcerecordid>3112921840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-99191f15da597ffb0eeb1b39df19e9db6abd276fe24d2fd4b997378114b72d6a3</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgqf0FeljwvDVfm2yOZa1aKChUzyHZTMqW7aYmW8F_79YV6VxmePPem-EhdEvwnBCsHhZVtdxs5hRTPmdclJgVF2hCiVA5K5i4PJuv0SylHR6qHKBCTpB6i2EbIaXmC7Jll2BvW8jWYGLXdNvMh5g1Xb4x-8MAP5reZFUL5rS7QVfetAlmf32KPp6W79VLvn59XlWLdV5TzvtcKaKIJ4UzhZLeWwxgiWXKeaJAOSuMdVQKD5Q76h23SkkmS0K4ldQJw6ZoNfq6YHb6EJu9id86mEb_AiFutYl9U7egJfBaeVZSISz3tTR1ga3zUhjqFZdu8LofvQ4xfB4h9XoXjrEb3teMEKooKTkeWGxk1TGkFMH_XyVYnyLXY-T6FLn-i3xQ3Y2qBgDOFEIxLin7AZlKfCA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112921840</pqid></control><display><type>article</type><title>Progressive Ensemble Learning for in-Sample Data Cleaning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wang, Jung-Hua ; Lee, Shih-Kai ; Wang, Ting-Yuan ; Chen, Ming-Jer ; Hsu, Shu-Wei</creator><creatorcontrib>Wang, Jung-Hua ; Lee, Shih-Kai ; Wang, Ting-Yuan ; Chen, Ming-Jer ; Hsu, Shu-Wei</creatorcontrib><description>We present an ensemble learning-based data cleaning approach (touted as ELDC) capable of identifying and pruning anomaly data. ELDC is characterized in that an ensemble of base models can be trained directly with the noisy in-sample data and can dynamically provide clean data during the iterative training. Each base model uses a random subset of the target dataset that may initially contain up to 40% of label errors. Following each training iteration, anomaly data are discriminated against clean ones by a majority voting scheme, and three different types of anomaly (mislabeled, confusing, and outliers) can be identified using a statistical pattern jointly determined by the prediction output of the base models. By iterating such a cycle of train-vote-remove, noisy in-sample data are progressively removed until a prespecified condition is reached. Comprehensive experiments, including out-sample data tests, are conducted to verify the effectiveness of ELDC in simultaneously suppressing bias and variance of the prediction output. The ELDC framework is highly flexible as it is not bound to a specific model and allows different transfer-learning configurations. Neural networks of AlexNet, ResNet50, and GoogleNet are used as based models and trained with various benchmark datasets, the results show that ELDC outperforms state-of-the-art cleaning methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3468035</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cleaning ; Complexity theory ; Convolutional neural networks ; Data analysis ; data cleanliness ; Data integrity ; Data models ; Datasets ; Ensemble learning ; Image classification ; Iterative methods ; Neural networks ; Noise measurement ; Noisy data ; Outliers (statistics) ; Training ; Training data ; Transfer learning ; true labels</subject><ispartof>IEEE access, 2024, Vol.12, p.140643-140659</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-99191f15da597ffb0eeb1b39df19e9db6abd276fe24d2fd4b997378114b72d6a3</cites><orcidid>0000-0003-1769-7396 ; 0000-0002-5618-1969 ; 0000-0002-2648-9532 ; 0009-0008-2914-8996</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10693472$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Wang, Jung-Hua</creatorcontrib><creatorcontrib>Lee, Shih-Kai</creatorcontrib><creatorcontrib>Wang, Ting-Yuan</creatorcontrib><creatorcontrib>Chen, Ming-Jer</creatorcontrib><creatorcontrib>Hsu, Shu-Wei</creatorcontrib><title>Progressive Ensemble Learning for in-Sample Data Cleaning</title><title>IEEE access</title><addtitle>Access</addtitle><description>We present an ensemble learning-based data cleaning approach (touted as ELDC) capable of identifying and pruning anomaly data. ELDC is characterized in that an ensemble of base models can be trained directly with the noisy in-sample data and can dynamically provide clean data during the iterative training. Each base model uses a random subset of the target dataset that may initially contain up to 40% of label errors. Following each training iteration, anomaly data are discriminated against clean ones by a majority voting scheme, and three different types of anomaly (mislabeled, confusing, and outliers) can be identified using a statistical pattern jointly determined by the prediction output of the base models. By iterating such a cycle of train-vote-remove, noisy in-sample data are progressively removed until a prespecified condition is reached. Comprehensive experiments, including out-sample data tests, are conducted to verify the effectiveness of ELDC in simultaneously suppressing bias and variance of the prediction output. The ELDC framework is highly flexible as it is not bound to a specific model and allows different transfer-learning configurations. Neural networks of AlexNet, ResNet50, and GoogleNet are used as based models and trained with various benchmark datasets, the results show that ELDC outperforms state-of-the-art cleaning methods.</description><subject>Cleaning</subject><subject>Complexity theory</subject><subject>Convolutional neural networks</subject><subject>Data analysis</subject><subject>data cleanliness</subject><subject>Data integrity</subject><subject>Data models</subject><subject>Datasets</subject><subject>Ensemble learning</subject><subject>Image classification</subject><subject>Iterative methods</subject><subject>Neural networks</subject><subject>Noise measurement</subject><subject>Noisy data</subject><subject>Outliers (statistics)</subject><subject>Training</subject><subject>Training data</subject><subject>Transfer learning</subject><subject>true labels</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEQDaJgqf0FeljwvDVfm2yOZa1aKChUzyHZTMqW7aYmW8F_79YV6VxmePPem-EhdEvwnBCsHhZVtdxs5hRTPmdclJgVF2hCiVA5K5i4PJuv0SylHR6qHKBCTpB6i2EbIaXmC7Jll2BvW8jWYGLXdNvMh5g1Xb4x-8MAP5reZFUL5rS7QVfetAlmf32KPp6W79VLvn59XlWLdV5TzvtcKaKIJ4UzhZLeWwxgiWXKeaJAOSuMdVQKD5Q76h23SkkmS0K4ldQJw6ZoNfq6YHb6EJu9id86mEb_AiFutYl9U7egJfBaeVZSISz3tTR1ga3zUhjqFZdu8LofvQ4xfB4h9XoXjrEb3teMEKooKTkeWGxk1TGkFMH_XyVYnyLXY-T6FLn-i3xQ3Y2qBgDOFEIxLin7AZlKfCA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Wang, Jung-Hua</creator><creator>Lee, Shih-Kai</creator><creator>Wang, Ting-Yuan</creator><creator>Chen, Ming-Jer</creator><creator>Hsu, Shu-Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1769-7396</orcidid><orcidid>https://orcid.org/0000-0002-5618-1969</orcidid><orcidid>https://orcid.org/0000-0002-2648-9532</orcidid><orcidid>https://orcid.org/0009-0008-2914-8996</orcidid></search><sort><creationdate>2024</creationdate><title>Progressive Ensemble Learning for in-Sample Data Cleaning</title><author>Wang, Jung-Hua ; Lee, Shih-Kai ; Wang, Ting-Yuan ; Chen, Ming-Jer ; Hsu, Shu-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-99191f15da597ffb0eeb1b39df19e9db6abd276fe24d2fd4b997378114b72d6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cleaning</topic><topic>Complexity theory</topic><topic>Convolutional neural networks</topic><topic>Data analysis</topic><topic>data cleanliness</topic><topic>Data integrity</topic><topic>Data models</topic><topic>Datasets</topic><topic>Ensemble learning</topic><topic>Image classification</topic><topic>Iterative methods</topic><topic>Neural networks</topic><topic>Noise measurement</topic><topic>Noisy data</topic><topic>Outliers (statistics)</topic><topic>Training</topic><topic>Training data</topic><topic>Transfer learning</topic><topic>true labels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jung-Hua</creatorcontrib><creatorcontrib>Lee, Shih-Kai</creatorcontrib><creatorcontrib>Wang, Ting-Yuan</creatorcontrib><creatorcontrib>Chen, Ming-Jer</creatorcontrib><creatorcontrib>Hsu, Shu-Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jung-Hua</au><au>Lee, Shih-Kai</au><au>Wang, Ting-Yuan</au><au>Chen, Ming-Jer</au><au>Hsu, Shu-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Progressive Ensemble Learning for in-Sample Data Cleaning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>140643</spage><epage>140659</epage><pages>140643-140659</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>We present an ensemble learning-based data cleaning approach (touted as ELDC) capable of identifying and pruning anomaly data. ELDC is characterized in that an ensemble of base models can be trained directly with the noisy in-sample data and can dynamically provide clean data during the iterative training. Each base model uses a random subset of the target dataset that may initially contain up to 40% of label errors. Following each training iteration, anomaly data are discriminated against clean ones by a majority voting scheme, and three different types of anomaly (mislabeled, confusing, and outliers) can be identified using a statistical pattern jointly determined by the prediction output of the base models. By iterating such a cycle of train-vote-remove, noisy in-sample data are progressively removed until a prespecified condition is reached. Comprehensive experiments, including out-sample data tests, are conducted to verify the effectiveness of ELDC in simultaneously suppressing bias and variance of the prediction output. The ELDC framework is highly flexible as it is not bound to a specific model and allows different transfer-learning configurations. Neural networks of AlexNet, ResNet50, and GoogleNet are used as based models and trained with various benchmark datasets, the results show that ELDC outperforms state-of-the-art cleaning methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3468035</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1769-7396</orcidid><orcidid>https://orcid.org/0000-0002-5618-1969</orcidid><orcidid>https://orcid.org/0000-0002-2648-9532</orcidid><orcidid>https://orcid.org/0009-0008-2914-8996</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.140643-140659
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3468035
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Cleaning
Complexity theory
Convolutional neural networks
Data analysis
data cleanliness
Data integrity
Data models
Datasets
Ensemble learning
Image classification
Iterative methods
Neural networks
Noise measurement
Noisy data
Outliers (statistics)
Training
Training data
Transfer learning
true labels
title Progressive Ensemble Learning for in-Sample Data Cleaning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A34%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Progressive%20Ensemble%20Learning%20for%20in-Sample%20Data%20Cleaning&rft.jtitle=IEEE%20access&rft.au=Wang,%20Jung-Hua&rft.date=2024&rft.volume=12&rft.spage=140643&rft.epage=140659&rft.pages=140643-140659&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3468035&rft_dat=%3Cproquest_cross%3E3112921840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112921840&rft_id=info:pmid/&rft_ieee_id=10693472&rft_doaj_id=oai_doaj_org_article_7e4c9f38266b4fc7ac50bdf76a2f947d&rfr_iscdi=true