Automatized End Mill Wear Inspection Using a Novel Illumination Unit and Convolutional Neural Network

Ensuring cutting tools are in optimal condition is essential for achieving peak machining performance, given their direct impact on both workpiece quality and process efficiency. However, accurately assessing wear on end mills, especially those with complex geometries, pose a significant challenge d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.124282-124297
Hauptverfasser: Bilal, Muhenad, Podishetti, Ranadheer, Koval, Leonid, Gaafar, Mahmoud A., Grossmann, Daniel, Bregulla, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 124297
container_issue
container_start_page 124282
container_title IEEE access
container_volume 12
creator Bilal, Muhenad
Podishetti, Ranadheer
Koval, Leonid
Gaafar, Mahmoud A.
Grossmann, Daniel
Bregulla, Markus
description Ensuring cutting tools are in optimal condition is essential for achieving peak machining performance, given their direct impact on both workpiece quality and process efficiency. However, accurately assessing wear on end mills, especially those with complex geometries, pose a significant challenge due to their reflective surfaces and varied wear patterns. Presented here is a novel method that addresses this challenge by employing a customized illumination unit in conjunction with a convolutional neural network (CNN) for end mill wear analysis. This innovative approach involves utilizing the specially designed illumination unit to capture high-quality images, enabling precise examination of material wear on helically shaped end mills. Notably, this method is tailored to illuminate reflective surfaces and represents a pioneering application in the realm of wear testing.We validate the viability of this approach by employing CNN-based models to segment wear on complex-shaped end mills coated with titanium carbonitride (TiCN) and titanium nitride (TiN). We achieved remarkable mean Intersection over Union (mIoU) results in wear detection on a test dataset: 0.99 for tool segmentation, 0.78 for abnormal wear, and 0.71 for normal wear segmentation.
doi_str_mv 10.1109/ACCESS.2024.3454692
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3454692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10666693</ieee_id><doaj_id>oai_doaj_org_article_244c9aa0911b420a9f857b3e9777f6b2</doaj_id><sourcerecordid>3102969856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-b5e801bc6241334ade9539b13b75f7585169b6b9d4ee41023186a9ab264567853</originalsourceid><addsrcrecordid>eNpNUU1v2zAMNYoNaNH1F2wHAT0n07etY2BkW4CuO3TFjgJl04VSxcoku8X266fUxVBeSDzyPZJ4VfWR0TVj1HzetO327m7NKZdrIZXUhp9VF5xpsxJK6Hdv6vPqKuc9LdEUSNUXFW7mKR5g8n-xJ9uxJ999COQXQiK7MR-xm3wcyX324wMBchufMJBdCPPBj7C0Rj8RKMQ2jk8xzCcQArnFOb2k6Tmmxw_V-wFCxqvXfFndf9n-bL-tbn583bWbm1XHGzOtnMKGMtdpLpkQEno0ShjHhKvVUKtGlaOddqaXiJJRLlijwYDjWipdN0pcVrtFt4-wt8fkD5D-2AjevgAxPVhIk-8CWi5lZwCoYcxJTsEMjaqdQFPX9aAdL1rXi9Yxxd8z5snu45zKb9mKstto0yhdpsQy1aWYc8Lh_1ZG7ckeu9hjT_bYV3sK69PC8oj4hqFLGCH-AZ5filM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102969856</pqid></control><display><type>article</type><title>Automatized End Mill Wear Inspection Using a Novel Illumination Unit and Convolutional Neural Network</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bilal, Muhenad ; Podishetti, Ranadheer ; Koval, Leonid ; Gaafar, Mahmoud A. ; Grossmann, Daniel ; Bregulla, Markus</creator><creatorcontrib>Bilal, Muhenad ; Podishetti, Ranadheer ; Koval, Leonid ; Gaafar, Mahmoud A. ; Grossmann, Daniel ; Bregulla, Markus</creatorcontrib><description>Ensuring cutting tools are in optimal condition is essential for achieving peak machining performance, given their direct impact on both workpiece quality and process efficiency. However, accurately assessing wear on end mills, especially those with complex geometries, pose a significant challenge due to their reflective surfaces and varied wear patterns. Presented here is a novel method that addresses this challenge by employing a customized illumination unit in conjunction with a convolutional neural network (CNN) for end mill wear analysis. This innovative approach involves utilizing the specially designed illumination unit to capture high-quality images, enabling precise examination of material wear on helically shaped end mills. Notably, this method is tailored to illuminate reflective surfaces and represents a pioneering application in the realm of wear testing.We validate the viability of this approach by employing CNN-based models to segment wear on complex-shaped end mills coated with titanium carbonitride (TiCN) and titanium nitride (TiN). We achieved remarkable mean Intersection over Union (mIoU) results in wear detection on a test dataset: 0.99 for tool segmentation, 0.78 for abnormal wear, and 0.71 for normal wear segmentation.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3454692</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; convolutional neural network ; Convolutional neural networks ; Cutting tools ; Cutting wear ; end mills ; helical geometries ; Illumination ; illumination source ; Image quality ; Inspection ; Lighting ; Machining ; machining performance ; material wear ; Milling ; Mills ; Neural networks ; Optical imaging ; Optical sensors ; Performance evaluation ; Reflection ; reflective surfaces ; Titanium carbonitride ; Titanium nitride ; Tool wear ; wear analysis ; wear segmentation ; Workpieces</subject><ispartof>IEEE access, 2024, Vol.12, p.124282-124297</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-b5e801bc6241334ade9539b13b75f7585169b6b9d4ee41023186a9ab264567853</cites><orcidid>0000-0003-4065-8467 ; 0000-0002-7388-5757 ; 0000-0003-4845-6579</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10666693$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Bilal, Muhenad</creatorcontrib><creatorcontrib>Podishetti, Ranadheer</creatorcontrib><creatorcontrib>Koval, Leonid</creatorcontrib><creatorcontrib>Gaafar, Mahmoud A.</creatorcontrib><creatorcontrib>Grossmann, Daniel</creatorcontrib><creatorcontrib>Bregulla, Markus</creatorcontrib><title>Automatized End Mill Wear Inspection Using a Novel Illumination Unit and Convolutional Neural Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>Ensuring cutting tools are in optimal condition is essential for achieving peak machining performance, given their direct impact on both workpiece quality and process efficiency. However, accurately assessing wear on end mills, especially those with complex geometries, pose a significant challenge due to their reflective surfaces and varied wear patterns. Presented here is a novel method that addresses this challenge by employing a customized illumination unit in conjunction with a convolutional neural network (CNN) for end mill wear analysis. This innovative approach involves utilizing the specially designed illumination unit to capture high-quality images, enabling precise examination of material wear on helically shaped end mills. Notably, this method is tailored to illuminate reflective surfaces and represents a pioneering application in the realm of wear testing.We validate the viability of this approach by employing CNN-based models to segment wear on complex-shaped end mills coated with titanium carbonitride (TiCN) and titanium nitride (TiN). We achieved remarkable mean Intersection over Union (mIoU) results in wear detection on a test dataset: 0.99 for tool segmentation, 0.78 for abnormal wear, and 0.71 for normal wear segmentation.</description><subject>Artificial neural networks</subject><subject>convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Cutting tools</subject><subject>Cutting wear</subject><subject>end mills</subject><subject>helical geometries</subject><subject>Illumination</subject><subject>illumination source</subject><subject>Image quality</subject><subject>Inspection</subject><subject>Lighting</subject><subject>Machining</subject><subject>machining performance</subject><subject>material wear</subject><subject>Milling</subject><subject>Mills</subject><subject>Neural networks</subject><subject>Optical imaging</subject><subject>Optical sensors</subject><subject>Performance evaluation</subject><subject>Reflection</subject><subject>reflective surfaces</subject><subject>Titanium carbonitride</subject><subject>Titanium nitride</subject><subject>Tool wear</subject><subject>wear analysis</subject><subject>wear segmentation</subject><subject>Workpieces</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1v2zAMNYoNaNH1F2wHAT0n07etY2BkW4CuO3TFjgJl04VSxcoku8X266fUxVBeSDzyPZJ4VfWR0TVj1HzetO327m7NKZdrIZXUhp9VF5xpsxJK6Hdv6vPqKuc9LdEUSNUXFW7mKR5g8n-xJ9uxJ999COQXQiK7MR-xm3wcyX324wMBchufMJBdCPPBj7C0Rj8RKMQ2jk8xzCcQArnFOb2k6Tmmxw_V-wFCxqvXfFndf9n-bL-tbn583bWbm1XHGzOtnMKGMtdpLpkQEno0ShjHhKvVUKtGlaOddqaXiJJRLlijwYDjWipdN0pcVrtFt4-wt8fkD5D-2AjevgAxPVhIk-8CWi5lZwCoYcxJTsEMjaqdQFPX9aAdL1rXi9Yxxd8z5snu45zKb9mKstto0yhdpsQy1aWYc8Lh_1ZG7ckeu9hjT_bYV3sK69PC8oj4hqFLGCH-AZ5filM</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Bilal, Muhenad</creator><creator>Podishetti, Ranadheer</creator><creator>Koval, Leonid</creator><creator>Gaafar, Mahmoud A.</creator><creator>Grossmann, Daniel</creator><creator>Bregulla, Markus</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4065-8467</orcidid><orcidid>https://orcid.org/0000-0002-7388-5757</orcidid><orcidid>https://orcid.org/0000-0003-4845-6579</orcidid></search><sort><creationdate>2024</creationdate><title>Automatized End Mill Wear Inspection Using a Novel Illumination Unit and Convolutional Neural Network</title><author>Bilal, Muhenad ; Podishetti, Ranadheer ; Koval, Leonid ; Gaafar, Mahmoud A. ; Grossmann, Daniel ; Bregulla, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-b5e801bc6241334ade9539b13b75f7585169b6b9d4ee41023186a9ab264567853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Cutting tools</topic><topic>Cutting wear</topic><topic>end mills</topic><topic>helical geometries</topic><topic>Illumination</topic><topic>illumination source</topic><topic>Image quality</topic><topic>Inspection</topic><topic>Lighting</topic><topic>Machining</topic><topic>machining performance</topic><topic>material wear</topic><topic>Milling</topic><topic>Mills</topic><topic>Neural networks</topic><topic>Optical imaging</topic><topic>Optical sensors</topic><topic>Performance evaluation</topic><topic>Reflection</topic><topic>reflective surfaces</topic><topic>Titanium carbonitride</topic><topic>Titanium nitride</topic><topic>Tool wear</topic><topic>wear analysis</topic><topic>wear segmentation</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bilal, Muhenad</creatorcontrib><creatorcontrib>Podishetti, Ranadheer</creatorcontrib><creatorcontrib>Koval, Leonid</creatorcontrib><creatorcontrib>Gaafar, Mahmoud A.</creatorcontrib><creatorcontrib>Grossmann, Daniel</creatorcontrib><creatorcontrib>Bregulla, Markus</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bilal, Muhenad</au><au>Podishetti, Ranadheer</au><au>Koval, Leonid</au><au>Gaafar, Mahmoud A.</au><au>Grossmann, Daniel</au><au>Bregulla, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatized End Mill Wear Inspection Using a Novel Illumination Unit and Convolutional Neural Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>124282</spage><epage>124297</epage><pages>124282-124297</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Ensuring cutting tools are in optimal condition is essential for achieving peak machining performance, given their direct impact on both workpiece quality and process efficiency. However, accurately assessing wear on end mills, especially those with complex geometries, pose a significant challenge due to their reflective surfaces and varied wear patterns. Presented here is a novel method that addresses this challenge by employing a customized illumination unit in conjunction with a convolutional neural network (CNN) for end mill wear analysis. This innovative approach involves utilizing the specially designed illumination unit to capture high-quality images, enabling precise examination of material wear on helically shaped end mills. Notably, this method is tailored to illuminate reflective surfaces and represents a pioneering application in the realm of wear testing.We validate the viability of this approach by employing CNN-based models to segment wear on complex-shaped end mills coated with titanium carbonitride (TiCN) and titanium nitride (TiN). We achieved remarkable mean Intersection over Union (mIoU) results in wear detection on a test dataset: 0.99 for tool segmentation, 0.78 for abnormal wear, and 0.71 for normal wear segmentation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3454692</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4065-8467</orcidid><orcidid>https://orcid.org/0000-0002-7388-5757</orcidid><orcidid>https://orcid.org/0000-0003-4845-6579</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.124282-124297
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3454692
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Artificial neural networks
convolutional neural network
Convolutional neural networks
Cutting tools
Cutting wear
end mills
helical geometries
Illumination
illumination source
Image quality
Inspection
Lighting
Machining
machining performance
material wear
Milling
Mills
Neural networks
Optical imaging
Optical sensors
Performance evaluation
Reflection
reflective surfaces
Titanium carbonitride
Titanium nitride
Tool wear
wear analysis
wear segmentation
Workpieces
title Automatized End Mill Wear Inspection Using a Novel Illumination Unit and Convolutional Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A55%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatized%20End%20Mill%20Wear%20Inspection%20Using%20a%20Novel%20Illumination%20Unit%20and%20Convolutional%20Neural%20Network&rft.jtitle=IEEE%20access&rft.au=Bilal,%20Muhenad&rft.date=2024&rft.volume=12&rft.spage=124282&rft.epage=124297&rft.pages=124282-124297&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3454692&rft_dat=%3Cproquest_cross%3E3102969856%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102969856&rft_id=info:pmid/&rft_ieee_id=10666693&rft_doaj_id=oai_doaj_org_article_244c9aa0911b420a9f857b3e9777f6b2&rfr_iscdi=true