Automatized End Mill Wear Inspection Using a Novel Illumination Unit and Convolutional Neural Network
Ensuring cutting tools are in optimal condition is essential for achieving peak machining performance, given their direct impact on both workpiece quality and process efficiency. However, accurately assessing wear on end mills, especially those with complex geometries, pose a significant challenge d...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.124282-124297 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 124297 |
---|---|
container_issue | |
container_start_page | 124282 |
container_title | IEEE access |
container_volume | 12 |
creator | Bilal, Muhenad Podishetti, Ranadheer Koval, Leonid Gaafar, Mahmoud A. Grossmann, Daniel Bregulla, Markus |
description | Ensuring cutting tools are in optimal condition is essential for achieving peak machining performance, given their direct impact on both workpiece quality and process efficiency. However, accurately assessing wear on end mills, especially those with complex geometries, pose a significant challenge due to their reflective surfaces and varied wear patterns. Presented here is a novel method that addresses this challenge by employing a customized illumination unit in conjunction with a convolutional neural network (CNN) for end mill wear analysis. This innovative approach involves utilizing the specially designed illumination unit to capture high-quality images, enabling precise examination of material wear on helically shaped end mills. Notably, this method is tailored to illuminate reflective surfaces and represents a pioneering application in the realm of wear testing.We validate the viability of this approach by employing CNN-based models to segment wear on complex-shaped end mills coated with titanium carbonitride (TiCN) and titanium nitride (TiN). We achieved remarkable mean Intersection over Union (mIoU) results in wear detection on a test dataset: 0.99 for tool segmentation, 0.78 for abnormal wear, and 0.71 for normal wear segmentation. |
doi_str_mv | 10.1109/ACCESS.2024.3454692 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3454692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10666693</ieee_id><doaj_id>oai_doaj_org_article_244c9aa0911b420a9f857b3e9777f6b2</doaj_id><sourcerecordid>3102969856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-b5e801bc6241334ade9539b13b75f7585169b6b9d4ee41023186a9ab264567853</originalsourceid><addsrcrecordid>eNpNUU1v2zAMNYoNaNH1F2wHAT0n07etY2BkW4CuO3TFjgJl04VSxcoku8X266fUxVBeSDzyPZJ4VfWR0TVj1HzetO327m7NKZdrIZXUhp9VF5xpsxJK6Hdv6vPqKuc9LdEUSNUXFW7mKR5g8n-xJ9uxJ999COQXQiK7MR-xm3wcyX324wMBchufMJBdCPPBj7C0Rj8RKMQ2jk8xzCcQArnFOb2k6Tmmxw_V-wFCxqvXfFndf9n-bL-tbn583bWbm1XHGzOtnMKGMtdpLpkQEno0ShjHhKvVUKtGlaOddqaXiJJRLlijwYDjWipdN0pcVrtFt4-wt8fkD5D-2AjevgAxPVhIk-8CWi5lZwCoYcxJTsEMjaqdQFPX9aAdL1rXi9Yxxd8z5snu45zKb9mKstto0yhdpsQy1aWYc8Lh_1ZG7ckeu9hjT_bYV3sK69PC8oj4hqFLGCH-AZ5filM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102969856</pqid></control><display><type>article</type><title>Automatized End Mill Wear Inspection Using a Novel Illumination Unit and Convolutional Neural Network</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bilal, Muhenad ; Podishetti, Ranadheer ; Koval, Leonid ; Gaafar, Mahmoud A. ; Grossmann, Daniel ; Bregulla, Markus</creator><creatorcontrib>Bilal, Muhenad ; Podishetti, Ranadheer ; Koval, Leonid ; Gaafar, Mahmoud A. ; Grossmann, Daniel ; Bregulla, Markus</creatorcontrib><description>Ensuring cutting tools are in optimal condition is essential for achieving peak machining performance, given their direct impact on both workpiece quality and process efficiency. However, accurately assessing wear on end mills, especially those with complex geometries, pose a significant challenge due to their reflective surfaces and varied wear patterns. Presented here is a novel method that addresses this challenge by employing a customized illumination unit in conjunction with a convolutional neural network (CNN) for end mill wear analysis. This innovative approach involves utilizing the specially designed illumination unit to capture high-quality images, enabling precise examination of material wear on helically shaped end mills. Notably, this method is tailored to illuminate reflective surfaces and represents a pioneering application in the realm of wear testing.We validate the viability of this approach by employing CNN-based models to segment wear on complex-shaped end mills coated with titanium carbonitride (TiCN) and titanium nitride (TiN). We achieved remarkable mean Intersection over Union (mIoU) results in wear detection on a test dataset: 0.99 for tool segmentation, 0.78 for abnormal wear, and 0.71 for normal wear segmentation.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3454692</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; convolutional neural network ; Convolutional neural networks ; Cutting tools ; Cutting wear ; end mills ; helical geometries ; Illumination ; illumination source ; Image quality ; Inspection ; Lighting ; Machining ; machining performance ; material wear ; Milling ; Mills ; Neural networks ; Optical imaging ; Optical sensors ; Performance evaluation ; Reflection ; reflective surfaces ; Titanium carbonitride ; Titanium nitride ; Tool wear ; wear analysis ; wear segmentation ; Workpieces</subject><ispartof>IEEE access, 2024, Vol.12, p.124282-124297</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-b5e801bc6241334ade9539b13b75f7585169b6b9d4ee41023186a9ab264567853</cites><orcidid>0000-0003-4065-8467 ; 0000-0002-7388-5757 ; 0000-0003-4845-6579</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10666693$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Bilal, Muhenad</creatorcontrib><creatorcontrib>Podishetti, Ranadheer</creatorcontrib><creatorcontrib>Koval, Leonid</creatorcontrib><creatorcontrib>Gaafar, Mahmoud A.</creatorcontrib><creatorcontrib>Grossmann, Daniel</creatorcontrib><creatorcontrib>Bregulla, Markus</creatorcontrib><title>Automatized End Mill Wear Inspection Using a Novel Illumination Unit and Convolutional Neural Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>Ensuring cutting tools are in optimal condition is essential for achieving peak machining performance, given their direct impact on both workpiece quality and process efficiency. However, accurately assessing wear on end mills, especially those with complex geometries, pose a significant challenge due to their reflective surfaces and varied wear patterns. Presented here is a novel method that addresses this challenge by employing a customized illumination unit in conjunction with a convolutional neural network (CNN) for end mill wear analysis. This innovative approach involves utilizing the specially designed illumination unit to capture high-quality images, enabling precise examination of material wear on helically shaped end mills. Notably, this method is tailored to illuminate reflective surfaces and represents a pioneering application in the realm of wear testing.We validate the viability of this approach by employing CNN-based models to segment wear on complex-shaped end mills coated with titanium carbonitride (TiCN) and titanium nitride (TiN). We achieved remarkable mean Intersection over Union (mIoU) results in wear detection on a test dataset: 0.99 for tool segmentation, 0.78 for abnormal wear, and 0.71 for normal wear segmentation.</description><subject>Artificial neural networks</subject><subject>convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Cutting tools</subject><subject>Cutting wear</subject><subject>end mills</subject><subject>helical geometries</subject><subject>Illumination</subject><subject>illumination source</subject><subject>Image quality</subject><subject>Inspection</subject><subject>Lighting</subject><subject>Machining</subject><subject>machining performance</subject><subject>material wear</subject><subject>Milling</subject><subject>Mills</subject><subject>Neural networks</subject><subject>Optical imaging</subject><subject>Optical sensors</subject><subject>Performance evaluation</subject><subject>Reflection</subject><subject>reflective surfaces</subject><subject>Titanium carbonitride</subject><subject>Titanium nitride</subject><subject>Tool wear</subject><subject>wear analysis</subject><subject>wear segmentation</subject><subject>Workpieces</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1v2zAMNYoNaNH1F2wHAT0n07etY2BkW4CuO3TFjgJl04VSxcoku8X266fUxVBeSDzyPZJ4VfWR0TVj1HzetO327m7NKZdrIZXUhp9VF5xpsxJK6Hdv6vPqKuc9LdEUSNUXFW7mKR5g8n-xJ9uxJ999COQXQiK7MR-xm3wcyX324wMBchufMJBdCPPBj7C0Rj8RKMQ2jk8xzCcQArnFOb2k6Tmmxw_V-wFCxqvXfFndf9n-bL-tbn583bWbm1XHGzOtnMKGMtdpLpkQEno0ShjHhKvVUKtGlaOddqaXiJJRLlijwYDjWipdN0pcVrtFt4-wt8fkD5D-2AjevgAxPVhIk-8CWi5lZwCoYcxJTsEMjaqdQFPX9aAdL1rXi9Yxxd8z5snu45zKb9mKstto0yhdpsQy1aWYc8Lh_1ZG7ckeu9hjT_bYV3sK69PC8oj4hqFLGCH-AZ5filM</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Bilal, Muhenad</creator><creator>Podishetti, Ranadheer</creator><creator>Koval, Leonid</creator><creator>Gaafar, Mahmoud A.</creator><creator>Grossmann, Daniel</creator><creator>Bregulla, Markus</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4065-8467</orcidid><orcidid>https://orcid.org/0000-0002-7388-5757</orcidid><orcidid>https://orcid.org/0000-0003-4845-6579</orcidid></search><sort><creationdate>2024</creationdate><title>Automatized End Mill Wear Inspection Using a Novel Illumination Unit and Convolutional Neural Network</title><author>Bilal, Muhenad ; Podishetti, Ranadheer ; Koval, Leonid ; Gaafar, Mahmoud A. ; Grossmann, Daniel ; Bregulla, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-b5e801bc6241334ade9539b13b75f7585169b6b9d4ee41023186a9ab264567853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Cutting tools</topic><topic>Cutting wear</topic><topic>end mills</topic><topic>helical geometries</topic><topic>Illumination</topic><topic>illumination source</topic><topic>Image quality</topic><topic>Inspection</topic><topic>Lighting</topic><topic>Machining</topic><topic>machining performance</topic><topic>material wear</topic><topic>Milling</topic><topic>Mills</topic><topic>Neural networks</topic><topic>Optical imaging</topic><topic>Optical sensors</topic><topic>Performance evaluation</topic><topic>Reflection</topic><topic>reflective surfaces</topic><topic>Titanium carbonitride</topic><topic>Titanium nitride</topic><topic>Tool wear</topic><topic>wear analysis</topic><topic>wear segmentation</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bilal, Muhenad</creatorcontrib><creatorcontrib>Podishetti, Ranadheer</creatorcontrib><creatorcontrib>Koval, Leonid</creatorcontrib><creatorcontrib>Gaafar, Mahmoud A.</creatorcontrib><creatorcontrib>Grossmann, Daniel</creatorcontrib><creatorcontrib>Bregulla, Markus</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bilal, Muhenad</au><au>Podishetti, Ranadheer</au><au>Koval, Leonid</au><au>Gaafar, Mahmoud A.</au><au>Grossmann, Daniel</au><au>Bregulla, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatized End Mill Wear Inspection Using a Novel Illumination Unit and Convolutional Neural Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>124282</spage><epage>124297</epage><pages>124282-124297</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Ensuring cutting tools are in optimal condition is essential for achieving peak machining performance, given their direct impact on both workpiece quality and process efficiency. However, accurately assessing wear on end mills, especially those with complex geometries, pose a significant challenge due to their reflective surfaces and varied wear patterns. Presented here is a novel method that addresses this challenge by employing a customized illumination unit in conjunction with a convolutional neural network (CNN) for end mill wear analysis. This innovative approach involves utilizing the specially designed illumination unit to capture high-quality images, enabling precise examination of material wear on helically shaped end mills. Notably, this method is tailored to illuminate reflective surfaces and represents a pioneering application in the realm of wear testing.We validate the viability of this approach by employing CNN-based models to segment wear on complex-shaped end mills coated with titanium carbonitride (TiCN) and titanium nitride (TiN). We achieved remarkable mean Intersection over Union (mIoU) results in wear detection on a test dataset: 0.99 for tool segmentation, 0.78 for abnormal wear, and 0.71 for normal wear segmentation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3454692</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4065-8467</orcidid><orcidid>https://orcid.org/0000-0002-7388-5757</orcidid><orcidid>https://orcid.org/0000-0003-4845-6579</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.124282-124297 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2024_3454692 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Artificial neural networks convolutional neural network Convolutional neural networks Cutting tools Cutting wear end mills helical geometries Illumination illumination source Image quality Inspection Lighting Machining machining performance material wear Milling Mills Neural networks Optical imaging Optical sensors Performance evaluation Reflection reflective surfaces Titanium carbonitride Titanium nitride Tool wear wear analysis wear segmentation Workpieces |
title | Automatized End Mill Wear Inspection Using a Novel Illumination Unit and Convolutional Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A55%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatized%20End%20Mill%20Wear%20Inspection%20Using%20a%20Novel%20Illumination%20Unit%20and%20Convolutional%20Neural%20Network&rft.jtitle=IEEE%20access&rft.au=Bilal,%20Muhenad&rft.date=2024&rft.volume=12&rft.spage=124282&rft.epage=124297&rft.pages=124282-124297&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3454692&rft_dat=%3Cproquest_cross%3E3102969856%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102969856&rft_id=info:pmid/&rft_ieee_id=10666693&rft_doaj_id=oai_doaj_org_article_244c9aa0911b420a9f857b3e9777f6b2&rfr_iscdi=true |