Classification of Volatile Organic Compounds by Differential Mobility Spectrometry Based on Continuity of Alpha Curves

Classification of volatile organic compounds (VOCs) is of interest in many fields. Examples include but are not limited to medicine, detection of explosives, and food quality control. Measurements collected with so-called electronic noses can be used for classification and analysis of VOCs. One type...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.130571-130582
Hauptverfasser: Rauhameri, Anton, Robinos, Angelo, Anttalainen, Osmo, Salpavaara, Timo, Rantala, Jussi, Surakka, Veikko, Kallio, Pasi, Vehkaoja, Antti, Muller, Philipp
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 130582
container_issue
container_start_page 130571
container_title IEEE access
container_volume 12
creator Rauhameri, Anton
Robinos, Angelo
Anttalainen, Osmo
Salpavaara, Timo
Rantala, Jussi
Surakka, Veikko
Kallio, Pasi
Vehkaoja, Antti
Muller, Philipp
description Classification of volatile organic compounds (VOCs) is of interest in many fields. Examples include but are not limited to medicine, detection of explosives, and food quality control. Measurements collected with so-called electronic noses can be used for classification and analysis of VOCs. One type of electronic noses that has seen considerable development in recent years is Differential Mobility Spectrometry (DMS). DMS yields measurements that are visualized as dispersion plots that contain traces, also known as alpha curves. Current methods used for analyzing DMS dispersion plots do not usually utilize the information stored in the continuity of these traces, which suggests that alternative approaches should be investigated. In this work, for the first time, dispersion plots were interpreted as a series of measurements evolving sequentially. Thus, it was hypothesized that time-series classification algorithms can be effective for classification and analysis of dispersion plots. An extensive dataset of 900 dispersion plots for five chemicals measured at five flow rates and two concentrations was collected. The data was used to analyze the classification performance of six algorithms. The highest classification accuracy of 88% was achieved by a Long-Short Term Memory neural network, which supports the hypothesis that interpreting DMS measurements as sequential data is beneficial and outperformed classification algorithms traditionally used for DMS-based VOC identification.
doi_str_mv 10.1109/ACCESS.2024.3453496
format Article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3453496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10663406</ieee_id><doaj_id>oai_doaj_org_article_1002adf3286348f79d28588a17a2b783</doaj_id><sourcerecordid>oai_doaj_org_article_1002adf3286348f79d28588a17a2b783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-e6be0b4962fec408f7aa0cc40ffcde7d55a8e419c5a83bff2f3bb9682980a71f3</originalsourceid><addsrcrecordid>eNpNkU1OwzAQhSMEEhX0BLDwBVr8kzjOsoQClUBdFNhaE2dcjNK4slOk3h6XItTZzNNo3jcavSy7YXTKGK3uZnU9X62mnPJ8KvJC5JU8y0acyWoiCiHPT_RlNo7xi6ZSaVSUo-y77iBGZ52BwfmeeEs-fJd0h2QZ1tA7Q2q_2fpd30bS7MmDsxYD9oODjrz6xnVu2JPVFs0Q_AaHsCf3ELElCVb7tNbvDguJO-u2n0DqXfjGeJ1dWOgijv_6Vfb-OH-rnycvy6dFPXuZGC7ZMEHZIG3SQ9yiyamyJQA1SVlrWizbogCFOatM6qKxllvRNJVUvFIUSmbFVbY4clsPX3ob3AbCXntw-nfgw1pDGJzpUDNKObRWcCVFni5VLVeFUsBK4E2pRGKJI8sEH2NA-89jVB-S0Mck9CEJ_ZdEct0eXQ4RTxwyXaFS_AAk9oc3</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Classification of Volatile Organic Compounds by Differential Mobility Spectrometry Based on Continuity of Alpha Curves</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Rauhameri, Anton ; Robinos, Angelo ; Anttalainen, Osmo ; Salpavaara, Timo ; Rantala, Jussi ; Surakka, Veikko ; Kallio, Pasi ; Vehkaoja, Antti ; Muller, Philipp</creator><creatorcontrib>Rauhameri, Anton ; Robinos, Angelo ; Anttalainen, Osmo ; Salpavaara, Timo ; Rantala, Jussi ; Surakka, Veikko ; Kallio, Pasi ; Vehkaoja, Antti ; Muller, Philipp</creatorcontrib><description>Classification of volatile organic compounds (VOCs) is of interest in many fields. Examples include but are not limited to medicine, detection of explosives, and food quality control. Measurements collected with so-called electronic noses can be used for classification and analysis of VOCs. One type of electronic noses that has seen considerable development in recent years is Differential Mobility Spectrometry (DMS). DMS yields measurements that are visualized as dispersion plots that contain traces, also known as alpha curves. Current methods used for analyzing DMS dispersion plots do not usually utilize the information stored in the continuity of these traces, which suggests that alternative approaches should be investigated. In this work, for the first time, dispersion plots were interpreted as a series of measurements evolving sequentially. Thus, it was hypothesized that time-series classification algorithms can be effective for classification and analysis of dispersion plots. An extensive dataset of 900 dispersion plots for five chemicals measured at five flow rates and two concentrations was collected. The data was used to analyze the classification performance of six algorithms. The highest classification accuracy of 88% was achieved by a Long-Short Term Memory neural network, which supports the hypothesis that interpreting DMS measurements as sequential data is beneficial and outperformed classification algorithms traditionally used for DMS-based VOC identification.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3453496</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Chemicals ; Classification ; Classification algorithms ; Current measurement ; differential mobility spectrometry ; Dispersion ; Ions ; Long short term memory ; Machine learning ; Neural networks ; Organic compounds ; Pollution measurement ; Spectroscopy ; Voltage measurement</subject><ispartof>IEEE access, 2024, Vol.12, p.130571-130582</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-e6be0b4962fec408f7aa0cc40ffcde7d55a8e419c5a83bff2f3bb9682980a71f3</cites><orcidid>0000-0002-2890-6782 ; 0009-0003-9200-9909 ; 0000-0001-8518-0407 ; 0000-0003-3986-0713 ; 0000-0003-4314-7339 ; 0000-0002-7021-7868 ; 0000-0003-3721-3467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10663406$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Rauhameri, Anton</creatorcontrib><creatorcontrib>Robinos, Angelo</creatorcontrib><creatorcontrib>Anttalainen, Osmo</creatorcontrib><creatorcontrib>Salpavaara, Timo</creatorcontrib><creatorcontrib>Rantala, Jussi</creatorcontrib><creatorcontrib>Surakka, Veikko</creatorcontrib><creatorcontrib>Kallio, Pasi</creatorcontrib><creatorcontrib>Vehkaoja, Antti</creatorcontrib><creatorcontrib>Muller, Philipp</creatorcontrib><title>Classification of Volatile Organic Compounds by Differential Mobility Spectrometry Based on Continuity of Alpha Curves</title><title>IEEE access</title><addtitle>Access</addtitle><description>Classification of volatile organic compounds (VOCs) is of interest in many fields. Examples include but are not limited to medicine, detection of explosives, and food quality control. Measurements collected with so-called electronic noses can be used for classification and analysis of VOCs. One type of electronic noses that has seen considerable development in recent years is Differential Mobility Spectrometry (DMS). DMS yields measurements that are visualized as dispersion plots that contain traces, also known as alpha curves. Current methods used for analyzing DMS dispersion plots do not usually utilize the information stored in the continuity of these traces, which suggests that alternative approaches should be investigated. In this work, for the first time, dispersion plots were interpreted as a series of measurements evolving sequentially. Thus, it was hypothesized that time-series classification algorithms can be effective for classification and analysis of dispersion plots. An extensive dataset of 900 dispersion plots for five chemicals measured at five flow rates and two concentrations was collected. The data was used to analyze the classification performance of six algorithms. The highest classification accuracy of 88% was achieved by a Long-Short Term Memory neural network, which supports the hypothesis that interpreting DMS measurements as sequential data is beneficial and outperformed classification algorithms traditionally used for DMS-based VOC identification.</description><subject>Accuracy</subject><subject>Chemicals</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Current measurement</subject><subject>differential mobility spectrometry</subject><subject>Dispersion</subject><subject>Ions</subject><subject>Long short term memory</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Organic compounds</subject><subject>Pollution measurement</subject><subject>Spectroscopy</subject><subject>Voltage measurement</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1OwzAQhSMEEhX0BLDwBVr8kzjOsoQClUBdFNhaE2dcjNK4slOk3h6XItTZzNNo3jcavSy7YXTKGK3uZnU9X62mnPJ8KvJC5JU8y0acyWoiCiHPT_RlNo7xi6ZSaVSUo-y77iBGZ52BwfmeeEs-fJd0h2QZ1tA7Q2q_2fpd30bS7MmDsxYD9oODjrz6xnVu2JPVFs0Q_AaHsCf3ELElCVb7tNbvDguJO-u2n0DqXfjGeJ1dWOgijv_6Vfb-OH-rnycvy6dFPXuZGC7ZMEHZIG3SQ9yiyamyJQA1SVlrWizbogCFOatM6qKxllvRNJVUvFIUSmbFVbY4clsPX3ob3AbCXntw-nfgw1pDGJzpUDNKObRWcCVFni5VLVeFUsBK4E2pRGKJI8sEH2NA-89jVB-S0Mck9CEJ_ZdEct0eXQ4RTxwyXaFS_AAk9oc3</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Rauhameri, Anton</creator><creator>Robinos, Angelo</creator><creator>Anttalainen, Osmo</creator><creator>Salpavaara, Timo</creator><creator>Rantala, Jussi</creator><creator>Surakka, Veikko</creator><creator>Kallio, Pasi</creator><creator>Vehkaoja, Antti</creator><creator>Muller, Philipp</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2890-6782</orcidid><orcidid>https://orcid.org/0009-0003-9200-9909</orcidid><orcidid>https://orcid.org/0000-0001-8518-0407</orcidid><orcidid>https://orcid.org/0000-0003-3986-0713</orcidid><orcidid>https://orcid.org/0000-0003-4314-7339</orcidid><orcidid>https://orcid.org/0000-0002-7021-7868</orcidid><orcidid>https://orcid.org/0000-0003-3721-3467</orcidid></search><sort><creationdate>2024</creationdate><title>Classification of Volatile Organic Compounds by Differential Mobility Spectrometry Based on Continuity of Alpha Curves</title><author>Rauhameri, Anton ; Robinos, Angelo ; Anttalainen, Osmo ; Salpavaara, Timo ; Rantala, Jussi ; Surakka, Veikko ; Kallio, Pasi ; Vehkaoja, Antti ; Muller, Philipp</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-e6be0b4962fec408f7aa0cc40ffcde7d55a8e419c5a83bff2f3bb9682980a71f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Chemicals</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Current measurement</topic><topic>differential mobility spectrometry</topic><topic>Dispersion</topic><topic>Ions</topic><topic>Long short term memory</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Organic compounds</topic><topic>Pollution measurement</topic><topic>Spectroscopy</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rauhameri, Anton</creatorcontrib><creatorcontrib>Robinos, Angelo</creatorcontrib><creatorcontrib>Anttalainen, Osmo</creatorcontrib><creatorcontrib>Salpavaara, Timo</creatorcontrib><creatorcontrib>Rantala, Jussi</creatorcontrib><creatorcontrib>Surakka, Veikko</creatorcontrib><creatorcontrib>Kallio, Pasi</creatorcontrib><creatorcontrib>Vehkaoja, Antti</creatorcontrib><creatorcontrib>Muller, Philipp</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rauhameri, Anton</au><au>Robinos, Angelo</au><au>Anttalainen, Osmo</au><au>Salpavaara, Timo</au><au>Rantala, Jussi</au><au>Surakka, Veikko</au><au>Kallio, Pasi</au><au>Vehkaoja, Antti</au><au>Muller, Philipp</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of Volatile Organic Compounds by Differential Mobility Spectrometry Based on Continuity of Alpha Curves</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>130571</spage><epage>130582</epage><pages>130571-130582</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Classification of volatile organic compounds (VOCs) is of interest in many fields. Examples include but are not limited to medicine, detection of explosives, and food quality control. Measurements collected with so-called electronic noses can be used for classification and analysis of VOCs. One type of electronic noses that has seen considerable development in recent years is Differential Mobility Spectrometry (DMS). DMS yields measurements that are visualized as dispersion plots that contain traces, also known as alpha curves. Current methods used for analyzing DMS dispersion plots do not usually utilize the information stored in the continuity of these traces, which suggests that alternative approaches should be investigated. In this work, for the first time, dispersion plots were interpreted as a series of measurements evolving sequentially. Thus, it was hypothesized that time-series classification algorithms can be effective for classification and analysis of dispersion plots. An extensive dataset of 900 dispersion plots for five chemicals measured at five flow rates and two concentrations was collected. The data was used to analyze the classification performance of six algorithms. The highest classification accuracy of 88% was achieved by a Long-Short Term Memory neural network, which supports the hypothesis that interpreting DMS measurements as sequential data is beneficial and outperformed classification algorithms traditionally used for DMS-based VOC identification.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3453496</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2890-6782</orcidid><orcidid>https://orcid.org/0009-0003-9200-9909</orcidid><orcidid>https://orcid.org/0000-0001-8518-0407</orcidid><orcidid>https://orcid.org/0000-0003-3986-0713</orcidid><orcidid>https://orcid.org/0000-0003-4314-7339</orcidid><orcidid>https://orcid.org/0000-0002-7021-7868</orcidid><orcidid>https://orcid.org/0000-0003-3721-3467</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.130571-130582
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3453496
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Chemicals
Classification
Classification algorithms
Current measurement
differential mobility spectrometry
Dispersion
Ions
Long short term memory
Machine learning
Neural networks
Organic compounds
Pollution measurement
Spectroscopy
Voltage measurement
title Classification of Volatile Organic Compounds by Differential Mobility Spectrometry Based on Continuity of Alpha Curves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20Volatile%20Organic%20Compounds%20by%20Differential%20Mobility%20Spectrometry%20Based%20on%20Continuity%20of%20Alpha%20Curves&rft.jtitle=IEEE%20access&rft.au=Rauhameri,%20Anton&rft.date=2024&rft.volume=12&rft.spage=130571&rft.epage=130582&rft.pages=130571-130582&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3453496&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_1002adf3286348f79d28588a17a2b783%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10663406&rft_doaj_id=oai_doaj_org_article_1002adf3286348f79d28588a17a2b783&rfr_iscdi=true