Multi-Stage Optimal Experimental Design and Setup Strategies in Absence of System Pre-Knowledge

Optimal Experimental Design (OED) aims to maximize information about model parameters with minimal experiments. Methodically, OED is based on the principle of maximizing Fisher information. The calculation of an optimized test plan thereby requires a qualified estimate, i.e. a priori information, ab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.120440-120453
Hauptverfasser: Stroebl, Florian, Schaeufl, Florian, Bohlen, Oliver, Palm, Herbert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 120453
container_issue
container_start_page 120440
container_title IEEE access
container_volume 12
creator Stroebl, Florian
Schaeufl, Florian
Bohlen, Oliver
Palm, Herbert
description Optimal Experimental Design (OED) aims to maximize information about model parameters with minimal experiments. Methodically, OED is based on the principle of maximizing Fisher information. The calculation of an optimized test plan thereby requires a qualified estimate, i.e. a priori information, about the true value of the parameters to be estimated. This paper introduces a novel Multi-Stage Optimal Experimental Design (MS-OED) framework that integrates Latin Hypercube (LH) sampling and OED for scenarios lacking prior system knowledge. The Virtual Experimental Framework (VEF) evaluates multiple experimental setups, assessing their impact on parameter estimation accuracy. Applied to a simulative lithium ion (Li-ion) battery calendar aging study, our MS-OED framework demonstrates, that reducing the duration of initial LH experiments allows for more effective subsequent OED stages, achieving a 92% reduction in the standard deviation of parameter estimates compared to single-stage design of experiments (DoE). This approach also reduces the experimental duration required to achieve similar confidence levels in parameter estimation to 32% of the time needed by conventional single-stage DoE. Sensitivity analysis further confirms the robustness of the pi-OED approach against uncertainties in initial parameter estimates for the given parametric model. The results highlight the framework's potential to significantly enhance the efficiency and accuracy of experiments, particularly in applications where prior knowledge is limited.
doi_str_mv 10.1109/ACCESS.2024.3446234
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3446234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10639411</ieee_id><doaj_id>oai_doaj_org_article_5db8f056a4cf4991ba52ad784ff74849</doaj_id><sourcerecordid>3101348536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-cb1621ae53f94bf077a16c6e81c65d7a43ffd191cf4b6f7c6c13deaf34559cba3</originalsourceid><addsrcrecordid>eNpNUU2P1DAMrRBIrJb9BXCIxLlD3Xy0OY6GAVYsWqTCOXJTp8qo05YkI9h_T5au0Ppi-8nv2fIrirdQ7QAq_WF_OBy7bldXtdhxIVTNxYviqgalSy65evmsfl3cxHiqcrQZks1VYb5dpuTLLuFI7H5N_owTO_5ZKfgzzSk3Hyn6cWY4D6yjdFlZlwImGj1F5me27yPNltjiWPcQE53Z90Dl13n5PdEw0pvilcMp0s1Tvi5-fjr-OHwp7-4_3x72d6WthUil7UHVgCS506J3VdMgKKuoBavk0KDgzg2gwTrRK9dYZYEPhI4LKbXtkV8Xt5vusODJrPl6DA9mQW_-AUsYDYbk7URGDn3rKqlQZDWtoUdZ49C0wrlGtEJnrfeb1hqWXxeKyZyWS5jz-YZDBVy0-ZV5im9TNiwxBnL_t0JlHo0xmzHm0RjzZExmvdtYnoieMRTXAoD_BVsligc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101348536</pqid></control><display><type>article</type><title>Multi-Stage Optimal Experimental Design and Setup Strategies in Absence of System Pre-Knowledge</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Stroebl, Florian ; Schaeufl, Florian ; Bohlen, Oliver ; Palm, Herbert</creator><creatorcontrib>Stroebl, Florian ; Schaeufl, Florian ; Bohlen, Oliver ; Palm, Herbert</creatorcontrib><description>Optimal Experimental Design (OED) aims to maximize information about model parameters with minimal experiments. Methodically, OED is based on the principle of maximizing Fisher information. The calculation of an optimized test plan thereby requires a qualified estimate, i.e. a priori information, about the true value of the parameters to be estimated. This paper introduces a novel Multi-Stage Optimal Experimental Design (MS-OED) framework that integrates Latin Hypercube (LH) sampling and OED for scenarios lacking prior system knowledge. The Virtual Experimental Framework (VEF) evaluates multiple experimental setups, assessing their impact on parameter estimation accuracy. Applied to a simulative lithium ion (Li-ion) battery calendar aging study, our MS-OED framework demonstrates, that reducing the duration of initial LH experiments allows for more effective subsequent OED stages, achieving a 92% reduction in the standard deviation of parameter estimates compared to single-stage design of experiments (DoE). This approach also reduces the experimental duration required to achieve similar confidence levels in parameter estimation to 32% of the time needed by conventional single-stage DoE. Sensitivity analysis further confirms the robustness of the pi-OED approach against uncertainties in initial parameter estimates for the given parametric model. The results highlight the framework's potential to significantly enhance the efficiency and accuracy of experiments, particularly in applications where prior knowledge is limited.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3446234</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Aging ; Battery aging ; Battery management systems ; calendar aging ; Confidence intervals ; Design of experiments ; Design standards ; Estimates ; experimental setup optimization ; Fisher information ; Hypercubes ; Lifetime estimation ; Lithium ions ; multi-stage experiment ; optimal experimental design ; Optimization ; Parameter estimation ; Parameter robustness ; Parameter sensitivity ; Parameter uncertainty ; parametric models ; Parametric statistics ; Predictive models ; Sensitivity analysis ; Uncertainty ; Uncertainty analysis ; Vectors</subject><ispartof>IEEE access, 2024, Vol.12, p.120440-120453</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-cb1621ae53f94bf077a16c6e81c65d7a43ffd191cf4b6f7c6c13deaf34559cba3</cites><orcidid>0000-0002-9468-1956 ; 0000-0002-5394-6444 ; 0000-0001-9798-0049 ; 0000-0003-4721-1414</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10639411$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Stroebl, Florian</creatorcontrib><creatorcontrib>Schaeufl, Florian</creatorcontrib><creatorcontrib>Bohlen, Oliver</creatorcontrib><creatorcontrib>Palm, Herbert</creatorcontrib><title>Multi-Stage Optimal Experimental Design and Setup Strategies in Absence of System Pre-Knowledge</title><title>IEEE access</title><addtitle>Access</addtitle><description>Optimal Experimental Design (OED) aims to maximize information about model parameters with minimal experiments. Methodically, OED is based on the principle of maximizing Fisher information. The calculation of an optimized test plan thereby requires a qualified estimate, i.e. a priori information, about the true value of the parameters to be estimated. This paper introduces a novel Multi-Stage Optimal Experimental Design (MS-OED) framework that integrates Latin Hypercube (LH) sampling and OED for scenarios lacking prior system knowledge. The Virtual Experimental Framework (VEF) evaluates multiple experimental setups, assessing their impact on parameter estimation accuracy. Applied to a simulative lithium ion (Li-ion) battery calendar aging study, our MS-OED framework demonstrates, that reducing the duration of initial LH experiments allows for more effective subsequent OED stages, achieving a 92% reduction in the standard deviation of parameter estimates compared to single-stage design of experiments (DoE). This approach also reduces the experimental duration required to achieve similar confidence levels in parameter estimation to 32% of the time needed by conventional single-stage DoE. Sensitivity analysis further confirms the robustness of the pi-OED approach against uncertainties in initial parameter estimates for the given parametric model. The results highlight the framework's potential to significantly enhance the efficiency and accuracy of experiments, particularly in applications where prior knowledge is limited.</description><subject>Accuracy</subject><subject>Aging</subject><subject>Battery aging</subject><subject>Battery management systems</subject><subject>calendar aging</subject><subject>Confidence intervals</subject><subject>Design of experiments</subject><subject>Design standards</subject><subject>Estimates</subject><subject>experimental setup optimization</subject><subject>Fisher information</subject><subject>Hypercubes</subject><subject>Lifetime estimation</subject><subject>Lithium ions</subject><subject>multi-stage experiment</subject><subject>optimal experimental design</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Parameter robustness</subject><subject>Parameter sensitivity</subject><subject>Parameter uncertainty</subject><subject>parametric models</subject><subject>Parametric statistics</subject><subject>Predictive models</subject><subject>Sensitivity analysis</subject><subject>Uncertainty</subject><subject>Uncertainty analysis</subject><subject>Vectors</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU2P1DAMrRBIrJb9BXCIxLlD3Xy0OY6GAVYsWqTCOXJTp8qo05YkI9h_T5au0Ppi-8nv2fIrirdQ7QAq_WF_OBy7bldXtdhxIVTNxYviqgalSy65evmsfl3cxHiqcrQZks1VYb5dpuTLLuFI7H5N_owTO_5ZKfgzzSk3Hyn6cWY4D6yjdFlZlwImGj1F5me27yPNltjiWPcQE53Z90Dl13n5PdEw0pvilcMp0s1Tvi5-fjr-OHwp7-4_3x72d6WthUil7UHVgCS506J3VdMgKKuoBavk0KDgzg2gwTrRK9dYZYEPhI4LKbXtkV8Xt5vusODJrPl6DA9mQW_-AUsYDYbk7URGDn3rKqlQZDWtoUdZ49C0wrlGtEJnrfeb1hqWXxeKyZyWS5jz-YZDBVy0-ZV5im9TNiwxBnL_t0JlHo0xmzHm0RjzZExmvdtYnoieMRTXAoD_BVsligc</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Stroebl, Florian</creator><creator>Schaeufl, Florian</creator><creator>Bohlen, Oliver</creator><creator>Palm, Herbert</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9468-1956</orcidid><orcidid>https://orcid.org/0000-0002-5394-6444</orcidid><orcidid>https://orcid.org/0000-0001-9798-0049</orcidid><orcidid>https://orcid.org/0000-0003-4721-1414</orcidid></search><sort><creationdate>2024</creationdate><title>Multi-Stage Optimal Experimental Design and Setup Strategies in Absence of System Pre-Knowledge</title><author>Stroebl, Florian ; Schaeufl, Florian ; Bohlen, Oliver ; Palm, Herbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-cb1621ae53f94bf077a16c6e81c65d7a43ffd191cf4b6f7c6c13deaf34559cba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Aging</topic><topic>Battery aging</topic><topic>Battery management systems</topic><topic>calendar aging</topic><topic>Confidence intervals</topic><topic>Design of experiments</topic><topic>Design standards</topic><topic>Estimates</topic><topic>experimental setup optimization</topic><topic>Fisher information</topic><topic>Hypercubes</topic><topic>Lifetime estimation</topic><topic>Lithium ions</topic><topic>multi-stage experiment</topic><topic>optimal experimental design</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Parameter robustness</topic><topic>Parameter sensitivity</topic><topic>Parameter uncertainty</topic><topic>parametric models</topic><topic>Parametric statistics</topic><topic>Predictive models</topic><topic>Sensitivity analysis</topic><topic>Uncertainty</topic><topic>Uncertainty analysis</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stroebl, Florian</creatorcontrib><creatorcontrib>Schaeufl, Florian</creatorcontrib><creatorcontrib>Bohlen, Oliver</creatorcontrib><creatorcontrib>Palm, Herbert</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stroebl, Florian</au><au>Schaeufl, Florian</au><au>Bohlen, Oliver</au><au>Palm, Herbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Stage Optimal Experimental Design and Setup Strategies in Absence of System Pre-Knowledge</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>120440</spage><epage>120453</epage><pages>120440-120453</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Optimal Experimental Design (OED) aims to maximize information about model parameters with minimal experiments. Methodically, OED is based on the principle of maximizing Fisher information. The calculation of an optimized test plan thereby requires a qualified estimate, i.e. a priori information, about the true value of the parameters to be estimated. This paper introduces a novel Multi-Stage Optimal Experimental Design (MS-OED) framework that integrates Latin Hypercube (LH) sampling and OED for scenarios lacking prior system knowledge. The Virtual Experimental Framework (VEF) evaluates multiple experimental setups, assessing their impact on parameter estimation accuracy. Applied to a simulative lithium ion (Li-ion) battery calendar aging study, our MS-OED framework demonstrates, that reducing the duration of initial LH experiments allows for more effective subsequent OED stages, achieving a 92% reduction in the standard deviation of parameter estimates compared to single-stage design of experiments (DoE). This approach also reduces the experimental duration required to achieve similar confidence levels in parameter estimation to 32% of the time needed by conventional single-stage DoE. Sensitivity analysis further confirms the robustness of the pi-OED approach against uncertainties in initial parameter estimates for the given parametric model. The results highlight the framework's potential to significantly enhance the efficiency and accuracy of experiments, particularly in applications where prior knowledge is limited.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3446234</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9468-1956</orcidid><orcidid>https://orcid.org/0000-0002-5394-6444</orcidid><orcidid>https://orcid.org/0000-0001-9798-0049</orcidid><orcidid>https://orcid.org/0000-0003-4721-1414</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.120440-120453
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3446234
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals
subjects Accuracy
Aging
Battery aging
Battery management systems
calendar aging
Confidence intervals
Design of experiments
Design standards
Estimates
experimental setup optimization
Fisher information
Hypercubes
Lifetime estimation
Lithium ions
multi-stage experiment
optimal experimental design
Optimization
Parameter estimation
Parameter robustness
Parameter sensitivity
Parameter uncertainty
parametric models
Parametric statistics
Predictive models
Sensitivity analysis
Uncertainty
Uncertainty analysis
Vectors
title Multi-Stage Optimal Experimental Design and Setup Strategies in Absence of System Pre-Knowledge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T10%3A36%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Stage%20Optimal%20Experimental%20Design%20and%20Setup%20Strategies%20in%20Absence%20of%20System%20Pre-Knowledge&rft.jtitle=IEEE%20access&rft.au=Stroebl,%20Florian&rft.date=2024&rft.volume=12&rft.spage=120440&rft.epage=120453&rft.pages=120440-120453&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3446234&rft_dat=%3Cproquest_cross%3E3101348536%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3101348536&rft_id=info:pmid/&rft_ieee_id=10639411&rft_doaj_id=oai_doaj_org_article_5db8f056a4cf4991ba52ad784ff74849&rfr_iscdi=true