Multi-Stage Optimal Experimental Design and Setup Strategies in Absence of System Pre-Knowledge
Optimal Experimental Design (OED) aims to maximize information about model parameters with minimal experiments. Methodically, OED is based on the principle of maximizing Fisher information. The calculation of an optimized test plan thereby requires a qualified estimate, i.e. a priori information, ab...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.120440-120453 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 120453 |
---|---|
container_issue | |
container_start_page | 120440 |
container_title | IEEE access |
container_volume | 12 |
creator | Stroebl, Florian Schaeufl, Florian Bohlen, Oliver Palm, Herbert |
description | Optimal Experimental Design (OED) aims to maximize information about model parameters with minimal experiments. Methodically, OED is based on the principle of maximizing Fisher information. The calculation of an optimized test plan thereby requires a qualified estimate, i.e. a priori information, about the true value of the parameters to be estimated. This paper introduces a novel Multi-Stage Optimal Experimental Design (MS-OED) framework that integrates Latin Hypercube (LH) sampling and OED for scenarios lacking prior system knowledge. The Virtual Experimental Framework (VEF) evaluates multiple experimental setups, assessing their impact on parameter estimation accuracy. Applied to a simulative lithium ion (Li-ion) battery calendar aging study, our MS-OED framework demonstrates, that reducing the duration of initial LH experiments allows for more effective subsequent OED stages, achieving a 92% reduction in the standard deviation of parameter estimates compared to single-stage design of experiments (DoE). This approach also reduces the experimental duration required to achieve similar confidence levels in parameter estimation to 32% of the time needed by conventional single-stage DoE. Sensitivity analysis further confirms the robustness of the pi-OED approach against uncertainties in initial parameter estimates for the given parametric model. The results highlight the framework's potential to significantly enhance the efficiency and accuracy of experiments, particularly in applications where prior knowledge is limited. |
doi_str_mv | 10.1109/ACCESS.2024.3446234 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3446234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10639411</ieee_id><doaj_id>oai_doaj_org_article_5db8f056a4cf4991ba52ad784ff74849</doaj_id><sourcerecordid>3101348536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-cb1621ae53f94bf077a16c6e81c65d7a43ffd191cf4b6f7c6c13deaf34559cba3</originalsourceid><addsrcrecordid>eNpNUU2P1DAMrRBIrJb9BXCIxLlD3Xy0OY6GAVYsWqTCOXJTp8qo05YkI9h_T5au0Ppi-8nv2fIrirdQ7QAq_WF_OBy7bldXtdhxIVTNxYviqgalSy65evmsfl3cxHiqcrQZks1VYb5dpuTLLuFI7H5N_owTO_5ZKfgzzSk3Hyn6cWY4D6yjdFlZlwImGj1F5me27yPNltjiWPcQE53Z90Dl13n5PdEw0pvilcMp0s1Tvi5-fjr-OHwp7-4_3x72d6WthUil7UHVgCS506J3VdMgKKuoBavk0KDgzg2gwTrRK9dYZYEPhI4LKbXtkV8Xt5vusODJrPl6DA9mQW_-AUsYDYbk7URGDn3rKqlQZDWtoUdZ49C0wrlGtEJnrfeb1hqWXxeKyZyWS5jz-YZDBVy0-ZV5im9TNiwxBnL_t0JlHo0xmzHm0RjzZExmvdtYnoieMRTXAoD_BVsligc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101348536</pqid></control><display><type>article</type><title>Multi-Stage Optimal Experimental Design and Setup Strategies in Absence of System Pre-Knowledge</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Stroebl, Florian ; Schaeufl, Florian ; Bohlen, Oliver ; Palm, Herbert</creator><creatorcontrib>Stroebl, Florian ; Schaeufl, Florian ; Bohlen, Oliver ; Palm, Herbert</creatorcontrib><description>Optimal Experimental Design (OED) aims to maximize information about model parameters with minimal experiments. Methodically, OED is based on the principle of maximizing Fisher information. The calculation of an optimized test plan thereby requires a qualified estimate, i.e. a priori information, about the true value of the parameters to be estimated. This paper introduces a novel Multi-Stage Optimal Experimental Design (MS-OED) framework that integrates Latin Hypercube (LH) sampling and OED for scenarios lacking prior system knowledge. The Virtual Experimental Framework (VEF) evaluates multiple experimental setups, assessing their impact on parameter estimation accuracy. Applied to a simulative lithium ion (Li-ion) battery calendar aging study, our MS-OED framework demonstrates, that reducing the duration of initial LH experiments allows for more effective subsequent OED stages, achieving a 92% reduction in the standard deviation of parameter estimates compared to single-stage design of experiments (DoE). This approach also reduces the experimental duration required to achieve similar confidence levels in parameter estimation to 32% of the time needed by conventional single-stage DoE. Sensitivity analysis further confirms the robustness of the pi-OED approach against uncertainties in initial parameter estimates for the given parametric model. The results highlight the framework's potential to significantly enhance the efficiency and accuracy of experiments, particularly in applications where prior knowledge is limited.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3446234</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Aging ; Battery aging ; Battery management systems ; calendar aging ; Confidence intervals ; Design of experiments ; Design standards ; Estimates ; experimental setup optimization ; Fisher information ; Hypercubes ; Lifetime estimation ; Lithium ions ; multi-stage experiment ; optimal experimental design ; Optimization ; Parameter estimation ; Parameter robustness ; Parameter sensitivity ; Parameter uncertainty ; parametric models ; Parametric statistics ; Predictive models ; Sensitivity analysis ; Uncertainty ; Uncertainty analysis ; Vectors</subject><ispartof>IEEE access, 2024, Vol.12, p.120440-120453</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-cb1621ae53f94bf077a16c6e81c65d7a43ffd191cf4b6f7c6c13deaf34559cba3</cites><orcidid>0000-0002-9468-1956 ; 0000-0002-5394-6444 ; 0000-0001-9798-0049 ; 0000-0003-4721-1414</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10639411$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Stroebl, Florian</creatorcontrib><creatorcontrib>Schaeufl, Florian</creatorcontrib><creatorcontrib>Bohlen, Oliver</creatorcontrib><creatorcontrib>Palm, Herbert</creatorcontrib><title>Multi-Stage Optimal Experimental Design and Setup Strategies in Absence of System Pre-Knowledge</title><title>IEEE access</title><addtitle>Access</addtitle><description>Optimal Experimental Design (OED) aims to maximize information about model parameters with minimal experiments. Methodically, OED is based on the principle of maximizing Fisher information. The calculation of an optimized test plan thereby requires a qualified estimate, i.e. a priori information, about the true value of the parameters to be estimated. This paper introduces a novel Multi-Stage Optimal Experimental Design (MS-OED) framework that integrates Latin Hypercube (LH) sampling and OED for scenarios lacking prior system knowledge. The Virtual Experimental Framework (VEF) evaluates multiple experimental setups, assessing their impact on parameter estimation accuracy. Applied to a simulative lithium ion (Li-ion) battery calendar aging study, our MS-OED framework demonstrates, that reducing the duration of initial LH experiments allows for more effective subsequent OED stages, achieving a 92% reduction in the standard deviation of parameter estimates compared to single-stage design of experiments (DoE). This approach also reduces the experimental duration required to achieve similar confidence levels in parameter estimation to 32% of the time needed by conventional single-stage DoE. Sensitivity analysis further confirms the robustness of the pi-OED approach against uncertainties in initial parameter estimates for the given parametric model. The results highlight the framework's potential to significantly enhance the efficiency and accuracy of experiments, particularly in applications where prior knowledge is limited.</description><subject>Accuracy</subject><subject>Aging</subject><subject>Battery aging</subject><subject>Battery management systems</subject><subject>calendar aging</subject><subject>Confidence intervals</subject><subject>Design of experiments</subject><subject>Design standards</subject><subject>Estimates</subject><subject>experimental setup optimization</subject><subject>Fisher information</subject><subject>Hypercubes</subject><subject>Lifetime estimation</subject><subject>Lithium ions</subject><subject>multi-stage experiment</subject><subject>optimal experimental design</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Parameter robustness</subject><subject>Parameter sensitivity</subject><subject>Parameter uncertainty</subject><subject>parametric models</subject><subject>Parametric statistics</subject><subject>Predictive models</subject><subject>Sensitivity analysis</subject><subject>Uncertainty</subject><subject>Uncertainty analysis</subject><subject>Vectors</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU2P1DAMrRBIrJb9BXCIxLlD3Xy0OY6GAVYsWqTCOXJTp8qo05YkI9h_T5au0Ppi-8nv2fIrirdQ7QAq_WF_OBy7bldXtdhxIVTNxYviqgalSy65evmsfl3cxHiqcrQZks1VYb5dpuTLLuFI7H5N_owTO_5ZKfgzzSk3Hyn6cWY4D6yjdFlZlwImGj1F5me27yPNltjiWPcQE53Z90Dl13n5PdEw0pvilcMp0s1Tvi5-fjr-OHwp7-4_3x72d6WthUil7UHVgCS506J3VdMgKKuoBavk0KDgzg2gwTrRK9dYZYEPhI4LKbXtkV8Xt5vusODJrPl6DA9mQW_-AUsYDYbk7URGDn3rKqlQZDWtoUdZ49C0wrlGtEJnrfeb1hqWXxeKyZyWS5jz-YZDBVy0-ZV5im9TNiwxBnL_t0JlHo0xmzHm0RjzZExmvdtYnoieMRTXAoD_BVsligc</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Stroebl, Florian</creator><creator>Schaeufl, Florian</creator><creator>Bohlen, Oliver</creator><creator>Palm, Herbert</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9468-1956</orcidid><orcidid>https://orcid.org/0000-0002-5394-6444</orcidid><orcidid>https://orcid.org/0000-0001-9798-0049</orcidid><orcidid>https://orcid.org/0000-0003-4721-1414</orcidid></search><sort><creationdate>2024</creationdate><title>Multi-Stage Optimal Experimental Design and Setup Strategies in Absence of System Pre-Knowledge</title><author>Stroebl, Florian ; Schaeufl, Florian ; Bohlen, Oliver ; Palm, Herbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-cb1621ae53f94bf077a16c6e81c65d7a43ffd191cf4b6f7c6c13deaf34559cba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Aging</topic><topic>Battery aging</topic><topic>Battery management systems</topic><topic>calendar aging</topic><topic>Confidence intervals</topic><topic>Design of experiments</topic><topic>Design standards</topic><topic>Estimates</topic><topic>experimental setup optimization</topic><topic>Fisher information</topic><topic>Hypercubes</topic><topic>Lifetime estimation</topic><topic>Lithium ions</topic><topic>multi-stage experiment</topic><topic>optimal experimental design</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Parameter robustness</topic><topic>Parameter sensitivity</topic><topic>Parameter uncertainty</topic><topic>parametric models</topic><topic>Parametric statistics</topic><topic>Predictive models</topic><topic>Sensitivity analysis</topic><topic>Uncertainty</topic><topic>Uncertainty analysis</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stroebl, Florian</creatorcontrib><creatorcontrib>Schaeufl, Florian</creatorcontrib><creatorcontrib>Bohlen, Oliver</creatorcontrib><creatorcontrib>Palm, Herbert</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stroebl, Florian</au><au>Schaeufl, Florian</au><au>Bohlen, Oliver</au><au>Palm, Herbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Stage Optimal Experimental Design and Setup Strategies in Absence of System Pre-Knowledge</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>120440</spage><epage>120453</epage><pages>120440-120453</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Optimal Experimental Design (OED) aims to maximize information about model parameters with minimal experiments. Methodically, OED is based on the principle of maximizing Fisher information. The calculation of an optimized test plan thereby requires a qualified estimate, i.e. a priori information, about the true value of the parameters to be estimated. This paper introduces a novel Multi-Stage Optimal Experimental Design (MS-OED) framework that integrates Latin Hypercube (LH) sampling and OED for scenarios lacking prior system knowledge. The Virtual Experimental Framework (VEF) evaluates multiple experimental setups, assessing their impact on parameter estimation accuracy. Applied to a simulative lithium ion (Li-ion) battery calendar aging study, our MS-OED framework demonstrates, that reducing the duration of initial LH experiments allows for more effective subsequent OED stages, achieving a 92% reduction in the standard deviation of parameter estimates compared to single-stage design of experiments (DoE). This approach also reduces the experimental duration required to achieve similar confidence levels in parameter estimation to 32% of the time needed by conventional single-stage DoE. Sensitivity analysis further confirms the robustness of the pi-OED approach against uncertainties in initial parameter estimates for the given parametric model. The results highlight the framework's potential to significantly enhance the efficiency and accuracy of experiments, particularly in applications where prior knowledge is limited.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3446234</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9468-1956</orcidid><orcidid>https://orcid.org/0000-0002-5394-6444</orcidid><orcidid>https://orcid.org/0000-0001-9798-0049</orcidid><orcidid>https://orcid.org/0000-0003-4721-1414</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.120440-120453 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2024_3446234 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals |
subjects | Accuracy Aging Battery aging Battery management systems calendar aging Confidence intervals Design of experiments Design standards Estimates experimental setup optimization Fisher information Hypercubes Lifetime estimation Lithium ions multi-stage experiment optimal experimental design Optimization Parameter estimation Parameter robustness Parameter sensitivity Parameter uncertainty parametric models Parametric statistics Predictive models Sensitivity analysis Uncertainty Uncertainty analysis Vectors |
title | Multi-Stage Optimal Experimental Design and Setup Strategies in Absence of System Pre-Knowledge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T10%3A36%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Stage%20Optimal%20Experimental%20Design%20and%20Setup%20Strategies%20in%20Absence%20of%20System%20Pre-Knowledge&rft.jtitle=IEEE%20access&rft.au=Stroebl,%20Florian&rft.date=2024&rft.volume=12&rft.spage=120440&rft.epage=120453&rft.pages=120440-120453&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3446234&rft_dat=%3Cproquest_cross%3E3101348536%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3101348536&rft_id=info:pmid/&rft_ieee_id=10639411&rft_doaj_id=oai_doaj_org_article_5db8f056a4cf4991ba52ad784ff74849&rfr_iscdi=true |