Novel Hybrid Sparse and Low-Rank Representation With Auto-Weight Minimax Lγ Concave Penalty for Image Denoising

Image denoising techniques often rely on convex relaxations, which can introduce bias into estimations. To address this, non-convex regularizers like weighted nuclear norm minimization and weighted Schatten p-norm minimization have been proposed. However, current implementations often rely on heuris...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.127916-127930
Hauptverfasser: Bo, Li, Junrui, Lv, Xuegang, Luo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127930
container_issue
container_start_page 127916
container_title IEEE access
container_volume 12
creator Bo, Li
Junrui, Lv
Xuegang, Luo
description Image denoising techniques often rely on convex relaxations, which can introduce bias into estimations. To address this, non-convex regularizers like weighted nuclear norm minimization and weighted Schatten p-norm minimization have been proposed. However, current implementations often rely on heuristic weight selection, neglecting the potential of automated strategies. This work introduces a novel non-convex, non-separable regularization term aimed at achieving a hybrid representation that leverages both low-rank (LR) and global sparse gradient (GS) structures. An iteratively auto-weighting Equivalent Minimax L{\gamma } Concave penalty (EMLC) is proposed for non-convex relaxations. To enhance sparsity and improve low-rank estimation, the EMLC-LRGS-based image denoising model is presented. This model integrates global gradient sparsity and LR priors within a unified framework using the EMLC penalty. The formulation addresses limitations of convex relaxations by employing an equivalent representation of the weight minimax L{\gamma } concave penalty as a combined global sparsity and local smoothness regularizer in the gradient domain. This aligns more closely with the data acquisition model and prior knowledge. To exploit the inherent low-rank structure of images, an equivalent representation of the weighted L{\gamma } norm is employed as a low-rank regularization term applied to groups of similar image patches. Efficient model resolution is achieved through an adaptive alternating direction method of multipliers (ADMM) algorithm that dynamically tunes the weighted parameter while promoting sparsity and a low-rank representation. The effectiveness of this approach is demonstrated through comprehensive comparisons with state-of-the-art image denoising models, showcasing its superiority in image denoising tasks.
doi_str_mv 10.1109/ACCESS.2024.3442373
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3442373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10634185</ieee_id><doaj_id>oai_doaj_org_article_3038f56a940d436f9511857eb24f6967</doaj_id><sourcerecordid>3106514665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-fa10e8229112e06a01d72e91e5a64d9233a64e5d3c0558bf7fd22ee9d1a8c8933</originalsourceid><addsrcrecordid>eNpNUdtOGzEQXVWtVAR8AX2w1OdNfd_1Y7SlECmFihTxaDm74-A02Fvboc139T_4ppouqpiXGR3NOXNGp6rOCJ4RgtWnededr1YziimfMc4pa9ib6ogSqWommHz7an5fnaa0xaXaAonmqBqvwiPs0OVhHd2AVqOJCZDxA1qGX_WN8T_QDYwREvhssgse3bl8j-b7HOo7cJv7jL467x7Mb7R8-oO64HvzCOgbeLPLB2RDRIsHswH0GXxwyfnNSfXOml2C05d-XN1-Of_eXdbL64tFN1_WPW1Vrq0hGFpKFSEUsDSYDA0FRUAYyQdFGSsdxMB6LES7to0dKAVQAzFt3yrGjqvFpDsEs9VjLB7jQQfj9D8gxI02Mbt-B5ph1lohjeJ44ExaJQhpRQNryq1UsilaHyetMYafe0hZb8M-lheTZgRLQbiUomyxaauPIaUI9v9VgvVzUnpKSj8npV-SKqwPE8sBwCuGZLyYYH8B9oWOiQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106514665</pqid></control><display><type>article</type><title>Novel Hybrid Sparse and Low-Rank Representation With Auto-Weight Minimax Lγ Concave Penalty for Image Denoising</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bo, Li ; Junrui, Lv ; Xuegang, Luo</creator><creatorcontrib>Bo, Li ; Junrui, Lv ; Xuegang, Luo</creatorcontrib><description><![CDATA[Image denoising techniques often rely on convex relaxations, which can introduce bias into estimations. To address this, non-convex regularizers like weighted nuclear norm minimization and weighted Schatten p-norm minimization have been proposed. However, current implementations often rely on heuristic weight selection, neglecting the potential of automated strategies. This work introduces a novel non-convex, non-separable regularization term aimed at achieving a hybrid representation that leverages both low-rank (LR) and global sparse gradient (GS) structures. An iteratively auto-weighting Equivalent Minimax <inline-formula> <tex-math notation="LaTeX">L{\gamma } </tex-math></inline-formula> Concave penalty (EMLC) is proposed for non-convex relaxations. To enhance sparsity and improve low-rank estimation, the EMLC-LRGS-based image denoising model is presented. This model integrates global gradient sparsity and LR priors within a unified framework using the EMLC penalty. The formulation addresses limitations of convex relaxations by employing an equivalent representation of the weight minimax <inline-formula> <tex-math notation="LaTeX">L{\gamma } </tex-math></inline-formula> concave penalty as a combined global sparsity and local smoothness regularizer in the gradient domain. This aligns more closely with the data acquisition model and prior knowledge. To exploit the inherent low-rank structure of images, an equivalent representation of the weighted <inline-formula> <tex-math notation="LaTeX">L{\gamma } </tex-math></inline-formula> norm is employed as a low-rank regularization term applied to groups of similar image patches. Efficient model resolution is achieved through an adaptive alternating direction method of multipliers (ADMM) algorithm that dynamically tunes the weighted parameter while promoting sparsity and a low-rank representation. The effectiveness of this approach is demonstrated through comprehensive comparisons with state-of-the-art image denoising models, showcasing its superiority in image denoising tasks.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3442373</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive algorithms ; Data acquisition ; Equivalence ; Image acquisition ; Image denoising ; Image enhancement ; Knowledge representation ; Mathematical models ; minimax Lγ concave penalty ; Minimax technique ; Minimization ; Noise reduction ; non-convex regularization ; Optimization ; Regularization ; Smoothness ; sparse and low-rank representation ; Sparse approximation ; Sparsity ; Task analysis</subject><ispartof>IEEE access, 2024, Vol.12, p.127916-127930</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-fa10e8229112e06a01d72e91e5a64d9233a64e5d3c0558bf7fd22ee9d1a8c8933</cites><orcidid>0000-0001-8240-5199 ; 0000-0002-6796-3819</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10634185$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Bo, Li</creatorcontrib><creatorcontrib>Junrui, Lv</creatorcontrib><creatorcontrib>Xuegang, Luo</creatorcontrib><title>Novel Hybrid Sparse and Low-Rank Representation With Auto-Weight Minimax Lγ Concave Penalty for Image Denoising</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[Image denoising techniques often rely on convex relaxations, which can introduce bias into estimations. To address this, non-convex regularizers like weighted nuclear norm minimization and weighted Schatten p-norm minimization have been proposed. However, current implementations often rely on heuristic weight selection, neglecting the potential of automated strategies. This work introduces a novel non-convex, non-separable regularization term aimed at achieving a hybrid representation that leverages both low-rank (LR) and global sparse gradient (GS) structures. An iteratively auto-weighting Equivalent Minimax <inline-formula> <tex-math notation="LaTeX">L{\gamma } </tex-math></inline-formula> Concave penalty (EMLC) is proposed for non-convex relaxations. To enhance sparsity and improve low-rank estimation, the EMLC-LRGS-based image denoising model is presented. This model integrates global gradient sparsity and LR priors within a unified framework using the EMLC penalty. The formulation addresses limitations of convex relaxations by employing an equivalent representation of the weight minimax <inline-formula> <tex-math notation="LaTeX">L{\gamma } </tex-math></inline-formula> concave penalty as a combined global sparsity and local smoothness regularizer in the gradient domain. This aligns more closely with the data acquisition model and prior knowledge. To exploit the inherent low-rank structure of images, an equivalent representation of the weighted <inline-formula> <tex-math notation="LaTeX">L{\gamma } </tex-math></inline-formula> norm is employed as a low-rank regularization term applied to groups of similar image patches. Efficient model resolution is achieved through an adaptive alternating direction method of multipliers (ADMM) algorithm that dynamically tunes the weighted parameter while promoting sparsity and a low-rank representation. The effectiveness of this approach is demonstrated through comprehensive comparisons with state-of-the-art image denoising models, showcasing its superiority in image denoising tasks.]]></description><subject>Adaptive algorithms</subject><subject>Data acquisition</subject><subject>Equivalence</subject><subject>Image acquisition</subject><subject>Image denoising</subject><subject>Image enhancement</subject><subject>Knowledge representation</subject><subject>Mathematical models</subject><subject>minimax Lγ concave penalty</subject><subject>Minimax technique</subject><subject>Minimization</subject><subject>Noise reduction</subject><subject>non-convex regularization</subject><subject>Optimization</subject><subject>Regularization</subject><subject>Smoothness</subject><subject>sparse and low-rank representation</subject><subject>Sparse approximation</subject><subject>Sparsity</subject><subject>Task analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtOGzEQXVWtVAR8AX2w1OdNfd_1Y7SlECmFihTxaDm74-A02Fvboc139T_4ppouqpiXGR3NOXNGp6rOCJ4RgtWnededr1YziimfMc4pa9ib6ogSqWommHz7an5fnaa0xaXaAonmqBqvwiPs0OVhHd2AVqOJCZDxA1qGX_WN8T_QDYwREvhssgse3bl8j-b7HOo7cJv7jL467x7Mb7R8-oO64HvzCOgbeLPLB2RDRIsHswH0GXxwyfnNSfXOml2C05d-XN1-Of_eXdbL64tFN1_WPW1Vrq0hGFpKFSEUsDSYDA0FRUAYyQdFGSsdxMB6LES7to0dKAVQAzFt3yrGjqvFpDsEs9VjLB7jQQfj9D8gxI02Mbt-B5ph1lohjeJ44ExaJQhpRQNryq1UsilaHyetMYafe0hZb8M-lheTZgRLQbiUomyxaauPIaUI9v9VgvVzUnpKSj8npV-SKqwPE8sBwCuGZLyYYH8B9oWOiQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Bo, Li</creator><creator>Junrui, Lv</creator><creator>Xuegang, Luo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8240-5199</orcidid><orcidid>https://orcid.org/0000-0002-6796-3819</orcidid></search><sort><creationdate>2024</creationdate><title>Novel Hybrid Sparse and Low-Rank Representation With Auto-Weight Minimax Lγ Concave Penalty for Image Denoising</title><author>Bo, Li ; Junrui, Lv ; Xuegang, Luo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-fa10e8229112e06a01d72e91e5a64d9233a64e5d3c0558bf7fd22ee9d1a8c8933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive algorithms</topic><topic>Data acquisition</topic><topic>Equivalence</topic><topic>Image acquisition</topic><topic>Image denoising</topic><topic>Image enhancement</topic><topic>Knowledge representation</topic><topic>Mathematical models</topic><topic>minimax Lγ concave penalty</topic><topic>Minimax technique</topic><topic>Minimization</topic><topic>Noise reduction</topic><topic>non-convex regularization</topic><topic>Optimization</topic><topic>Regularization</topic><topic>Smoothness</topic><topic>sparse and low-rank representation</topic><topic>Sparse approximation</topic><topic>Sparsity</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bo, Li</creatorcontrib><creatorcontrib>Junrui, Lv</creatorcontrib><creatorcontrib>Xuegang, Luo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bo, Li</au><au>Junrui, Lv</au><au>Xuegang, Luo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Hybrid Sparse and Low-Rank Representation With Auto-Weight Minimax Lγ Concave Penalty for Image Denoising</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>127916</spage><epage>127930</epage><pages>127916-127930</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[Image denoising techniques often rely on convex relaxations, which can introduce bias into estimations. To address this, non-convex regularizers like weighted nuclear norm minimization and weighted Schatten p-norm minimization have been proposed. However, current implementations often rely on heuristic weight selection, neglecting the potential of automated strategies. This work introduces a novel non-convex, non-separable regularization term aimed at achieving a hybrid representation that leverages both low-rank (LR) and global sparse gradient (GS) structures. An iteratively auto-weighting Equivalent Minimax <inline-formula> <tex-math notation="LaTeX">L{\gamma } </tex-math></inline-formula> Concave penalty (EMLC) is proposed for non-convex relaxations. To enhance sparsity and improve low-rank estimation, the EMLC-LRGS-based image denoising model is presented. This model integrates global gradient sparsity and LR priors within a unified framework using the EMLC penalty. The formulation addresses limitations of convex relaxations by employing an equivalent representation of the weight minimax <inline-formula> <tex-math notation="LaTeX">L{\gamma } </tex-math></inline-formula> concave penalty as a combined global sparsity and local smoothness regularizer in the gradient domain. This aligns more closely with the data acquisition model and prior knowledge. To exploit the inherent low-rank structure of images, an equivalent representation of the weighted <inline-formula> <tex-math notation="LaTeX">L{\gamma } </tex-math></inline-formula> norm is employed as a low-rank regularization term applied to groups of similar image patches. Efficient model resolution is achieved through an adaptive alternating direction method of multipliers (ADMM) algorithm that dynamically tunes the weighted parameter while promoting sparsity and a low-rank representation. The effectiveness of this approach is demonstrated through comprehensive comparisons with state-of-the-art image denoising models, showcasing its superiority in image denoising tasks.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3442373</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8240-5199</orcidid><orcidid>https://orcid.org/0000-0002-6796-3819</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.127916-127930
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3442373
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adaptive algorithms
Data acquisition
Equivalence
Image acquisition
Image denoising
Image enhancement
Knowledge representation
Mathematical models
minimax Lγ concave penalty
Minimax technique
Minimization
Noise reduction
non-convex regularization
Optimization
Regularization
Smoothness
sparse and low-rank representation
Sparse approximation
Sparsity
Task analysis
title Novel Hybrid Sparse and Low-Rank Representation With Auto-Weight Minimax Lγ Concave Penalty for Image Denoising
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A44%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Hybrid%20Sparse%20and%20Low-Rank%20Representation%20With%20Auto-Weight%20Minimax%20L%CE%B3%20Concave%20Penalty%20for%20Image%20Denoising&rft.jtitle=IEEE%20access&rft.au=Bo,%20Li&rft.date=2024&rft.volume=12&rft.spage=127916&rft.epage=127930&rft.pages=127916-127930&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3442373&rft_dat=%3Cproquest_cross%3E3106514665%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106514665&rft_id=info:pmid/&rft_ieee_id=10634185&rft_doaj_id=oai_doaj_org_article_3038f56a940d436f9511857eb24f6967&rfr_iscdi=true