Development of Residual Dense U-Net (RDU-Net)-Based Metal Artefacts Reduction Technique Using Spectral Photon Counting CT
Metal induced artefacts in computed tomography (CT) images are primarily caused by beam hardening, scatter effects, and photon starvation. These artefacts impede the characterization of fine anatomical structures and compromise the diagnostic value of the CT images. We aim to develop an innovative m...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.109735-109749 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 109749 |
---|---|
container_issue | |
container_start_page | 109735 |
container_title | IEEE access |
container_volume | 12 |
creator | Khan, Osama Tariq, Briya Francis, Nadine Maalej, Nabil Behouch, Abderaouf Kashif, Amer Waris, Asim Raja, Aamir |
description | Metal induced artefacts in computed tomography (CT) images are primarily caused by beam hardening, scatter effects, and photon starvation. These artefacts impede the characterization of fine anatomical structures and compromise the diagnostic value of the CT images. We aim to develop an innovative machine learning-based technique called residual dense U-Net (RDU-Net), specifically for spectral photon-counting CT (SPCCT), to mitigate metal artefacts across all energy bins. The proposed model was quantitatively evaluated, with and without the metal artefact reduction (MAR) algorithm, using line profiles, histogram analysis, signal-to-noise ratio (SNR), root mean squared error (RMSE), and structural similarity index measure (SSIM). The results show significant improvements with the average SNR increasing from 3.37 to 17.40 across the five energy bins after the application of the MAR algorithm. The average RMSE decreased from 0.016 to 0.001, and the average SSIM increased by 34.9%. The study also evaluated material density images of hydroxyapatite (HA) and iodine, with and without the MAR algorithm, using the receiver operating characteristic (ROC) paradigm. The results show improved accuracy in the material identification for HA (86% to 91%) and iodine (84% to 93%) after MAR. Overall, the evaluation of the model show promising results and the potential to significantly decrease the metal artefacts in all the parameters used in the energy analysis at p < 0.0001, while preserving the attenuation profile of SPCCT images. |
doi_str_mv | 10.1109/ACCESS.2024.3439861 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3439861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10630472</ieee_id><doaj_id>oai_doaj_org_article_0e4116dc1efa4e30aa94fddefd22ac6c</doaj_id><sourcerecordid>3092918475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-353959e7754ee192ea0e7f518bb2bca7b66f7c4d23de772e32371b9c454971b33</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIoMIXwCESFzik-JU4PpaUl8RLtD1bjr0pqdq42A4Sf49LEMIXj3ZnZnc1SXKK0RhjJK4mVXUzm40JImxMGRVlgfeSI4ILkdGcFvv_8GFy4v0KxVfGUs6Pkq8pfMLabjfQhdQ26Rv41vRqnU6h85AusmcI6cXb9AdcZtfKg0mfIETGxAVolA4-ikyvQ2u7dA76vWs_-qj0bbdMZ1vQwUXy67sNsV_Zvgu7RjU_Tg4atfZw8vuPksXtzby6zx5f7h6qyWOmSSnCbm2RC-A8ZwBYEFAIeJPjsq5JrRWvi6LhmhlCTSQRoIRyXAvNciYioHSUPAy-xqqV3Lp2o9yXtKqVPwXrllK50Oo1SAQM48JoHO9iQJFSgjXGQGMIUbrQ0et88No6G4_0Qa5s77q4vqRIEIFLxvPIogNLO-u9g-ZvKkZyF5kcIpO7yORvZFF1NqhaAPinKChinNBvqE6SJA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092918475</pqid></control><display><type>article</type><title>Development of Residual Dense U-Net (RDU-Net)-Based Metal Artefacts Reduction Technique Using Spectral Photon Counting CT</title><source>Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Khan, Osama ; Tariq, Briya ; Francis, Nadine ; Maalej, Nabil ; Behouch, Abderaouf ; Kashif, Amer ; Waris, Asim ; Raja, Aamir</creator><creatorcontrib>Khan, Osama ; Tariq, Briya ; Francis, Nadine ; Maalej, Nabil ; Behouch, Abderaouf ; Kashif, Amer ; Waris, Asim ; Raja, Aamir</creatorcontrib><description>Metal induced artefacts in computed tomography (CT) images are primarily caused by beam hardening, scatter effects, and photon starvation. These artefacts impede the characterization of fine anatomical structures and compromise the diagnostic value of the CT images. We aim to develop an innovative machine learning-based technique called residual dense U-Net (RDU-Net), specifically for spectral photon-counting CT (SPCCT), to mitigate metal artefacts across all energy bins. The proposed model was quantitatively evaluated, with and without the metal artefact reduction (MAR) algorithm, using line profiles, histogram analysis, signal-to-noise ratio (SNR), root mean squared error (RMSE), and structural similarity index measure (SSIM). The results show significant improvements with the average SNR increasing from 3.37 to 17.40 across the five energy bins after the application of the MAR algorithm. The average RMSE decreased from 0.016 to 0.001, and the average SSIM increased by 34.9%. The study also evaluated material density images of hydroxyapatite (HA) and iodine, with and without the MAR algorithm, using the receiver operating characteristic (ROC) paradigm. The results show improved accuracy in the material identification for HA (86% to 91%) and iodine (84% to 93%) after MAR. Overall, the evaluation of the model show promising results and the potential to significantly decrease the metal artefacts in all the parameters used in the energy analysis at p < 0.0001, while preserving the attenuation profile of SPCCT images.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3439861</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Aluminum ; Attenuation ; Bins ; Computed tomography ; Computed tomography (CT) ; Error analysis ; Hydroxyapatite ; Iodine ; Machine learning ; Mars ; Medical imaging ; metal artefacts reduction (MAR) ; Parameter identification ; Photon beams ; Photonics ; Photons ; Root-mean-square errors ; Signal to noise ratio ; spectral photon-counting CT (SPCCT) ; Steel ; Training</subject><ispartof>IEEE access, 2024, Vol.12, p.109735-109749</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-353959e7754ee192ea0e7f518bb2bca7b66f7c4d23de772e32371b9c454971b33</cites><orcidid>0009-0005-6859-0144 ; 0009-0006-7881-4399 ; 0000-0002-6633-6223 ; 0000-0002-0190-0700 ; 0000-0002-0040-1723 ; 0009-0009-2233-0856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10630472$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Khan, Osama</creatorcontrib><creatorcontrib>Tariq, Briya</creatorcontrib><creatorcontrib>Francis, Nadine</creatorcontrib><creatorcontrib>Maalej, Nabil</creatorcontrib><creatorcontrib>Behouch, Abderaouf</creatorcontrib><creatorcontrib>Kashif, Amer</creatorcontrib><creatorcontrib>Waris, Asim</creatorcontrib><creatorcontrib>Raja, Aamir</creatorcontrib><title>Development of Residual Dense U-Net (RDU-Net)-Based Metal Artefacts Reduction Technique Using Spectral Photon Counting CT</title><title>IEEE access</title><addtitle>Access</addtitle><description>Metal induced artefacts in computed tomography (CT) images are primarily caused by beam hardening, scatter effects, and photon starvation. These artefacts impede the characterization of fine anatomical structures and compromise the diagnostic value of the CT images. We aim to develop an innovative machine learning-based technique called residual dense U-Net (RDU-Net), specifically for spectral photon-counting CT (SPCCT), to mitigate metal artefacts across all energy bins. The proposed model was quantitatively evaluated, with and without the metal artefact reduction (MAR) algorithm, using line profiles, histogram analysis, signal-to-noise ratio (SNR), root mean squared error (RMSE), and structural similarity index measure (SSIM). The results show significant improvements with the average SNR increasing from 3.37 to 17.40 across the five energy bins after the application of the MAR algorithm. The average RMSE decreased from 0.016 to 0.001, and the average SSIM increased by 34.9%. The study also evaluated material density images of hydroxyapatite (HA) and iodine, with and without the MAR algorithm, using the receiver operating characteristic (ROC) paradigm. The results show improved accuracy in the material identification for HA (86% to 91%) and iodine (84% to 93%) after MAR. Overall, the evaluation of the model show promising results and the potential to significantly decrease the metal artefacts in all the parameters used in the energy analysis at p < 0.0001, while preserving the attenuation profile of SPCCT images.</description><subject>Algorithms</subject><subject>Aluminum</subject><subject>Attenuation</subject><subject>Bins</subject><subject>Computed tomography</subject><subject>Computed tomography (CT)</subject><subject>Error analysis</subject><subject>Hydroxyapatite</subject><subject>Iodine</subject><subject>Machine learning</subject><subject>Mars</subject><subject>Medical imaging</subject><subject>metal artefacts reduction (MAR)</subject><subject>Parameter identification</subject><subject>Photon beams</subject><subject>Photonics</subject><subject>Photons</subject><subject>Root-mean-square errors</subject><subject>Signal to noise ratio</subject><subject>spectral photon-counting CT (SPCCT)</subject><subject>Steel</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIoMIXwCESFzik-JU4PpaUl8RLtD1bjr0pqdq42A4Sf49LEMIXj3ZnZnc1SXKK0RhjJK4mVXUzm40JImxMGRVlgfeSI4ILkdGcFvv_8GFy4v0KxVfGUs6Pkq8pfMLabjfQhdQ26Rv41vRqnU6h85AusmcI6cXb9AdcZtfKg0mfIETGxAVolA4-ikyvQ2u7dA76vWs_-qj0bbdMZ1vQwUXy67sNsV_Zvgu7RjU_Tg4atfZw8vuPksXtzby6zx5f7h6qyWOmSSnCbm2RC-A8ZwBYEFAIeJPjsq5JrRWvi6LhmhlCTSQRoIRyXAvNciYioHSUPAy-xqqV3Lp2o9yXtKqVPwXrllK50Oo1SAQM48JoHO9iQJFSgjXGQGMIUbrQ0et88No6G4_0Qa5s77q4vqRIEIFLxvPIogNLO-u9g-ZvKkZyF5kcIpO7yORvZFF1NqhaAPinKChinNBvqE6SJA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Khan, Osama</creator><creator>Tariq, Briya</creator><creator>Francis, Nadine</creator><creator>Maalej, Nabil</creator><creator>Behouch, Abderaouf</creator><creator>Kashif, Amer</creator><creator>Waris, Asim</creator><creator>Raja, Aamir</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0005-6859-0144</orcidid><orcidid>https://orcid.org/0009-0006-7881-4399</orcidid><orcidid>https://orcid.org/0000-0002-6633-6223</orcidid><orcidid>https://orcid.org/0000-0002-0190-0700</orcidid><orcidid>https://orcid.org/0000-0002-0040-1723</orcidid><orcidid>https://orcid.org/0009-0009-2233-0856</orcidid></search><sort><creationdate>2024</creationdate><title>Development of Residual Dense U-Net (RDU-Net)-Based Metal Artefacts Reduction Technique Using Spectral Photon Counting CT</title><author>Khan, Osama ; Tariq, Briya ; Francis, Nadine ; Maalej, Nabil ; Behouch, Abderaouf ; Kashif, Amer ; Waris, Asim ; Raja, Aamir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-353959e7754ee192ea0e7f518bb2bca7b66f7c4d23de772e32371b9c454971b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Aluminum</topic><topic>Attenuation</topic><topic>Bins</topic><topic>Computed tomography</topic><topic>Computed tomography (CT)</topic><topic>Error analysis</topic><topic>Hydroxyapatite</topic><topic>Iodine</topic><topic>Machine learning</topic><topic>Mars</topic><topic>Medical imaging</topic><topic>metal artefacts reduction (MAR)</topic><topic>Parameter identification</topic><topic>Photon beams</topic><topic>Photonics</topic><topic>Photons</topic><topic>Root-mean-square errors</topic><topic>Signal to noise ratio</topic><topic>spectral photon-counting CT (SPCCT)</topic><topic>Steel</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Osama</creatorcontrib><creatorcontrib>Tariq, Briya</creatorcontrib><creatorcontrib>Francis, Nadine</creatorcontrib><creatorcontrib>Maalej, Nabil</creatorcontrib><creatorcontrib>Behouch, Abderaouf</creatorcontrib><creatorcontrib>Kashif, Amer</creatorcontrib><creatorcontrib>Waris, Asim</creatorcontrib><creatorcontrib>Raja, Aamir</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Osama</au><au>Tariq, Briya</au><au>Francis, Nadine</au><au>Maalej, Nabil</au><au>Behouch, Abderaouf</au><au>Kashif, Amer</au><au>Waris, Asim</au><au>Raja, Aamir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Residual Dense U-Net (RDU-Net)-Based Metal Artefacts Reduction Technique Using Spectral Photon Counting CT</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>109735</spage><epage>109749</epage><pages>109735-109749</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Metal induced artefacts in computed tomography (CT) images are primarily caused by beam hardening, scatter effects, and photon starvation. These artefacts impede the characterization of fine anatomical structures and compromise the diagnostic value of the CT images. We aim to develop an innovative machine learning-based technique called residual dense U-Net (RDU-Net), specifically for spectral photon-counting CT (SPCCT), to mitigate metal artefacts across all energy bins. The proposed model was quantitatively evaluated, with and without the metal artefact reduction (MAR) algorithm, using line profiles, histogram analysis, signal-to-noise ratio (SNR), root mean squared error (RMSE), and structural similarity index measure (SSIM). The results show significant improvements with the average SNR increasing from 3.37 to 17.40 across the five energy bins after the application of the MAR algorithm. The average RMSE decreased from 0.016 to 0.001, and the average SSIM increased by 34.9%. The study also evaluated material density images of hydroxyapatite (HA) and iodine, with and without the MAR algorithm, using the receiver operating characteristic (ROC) paradigm. The results show improved accuracy in the material identification for HA (86% to 91%) and iodine (84% to 93%) after MAR. Overall, the evaluation of the model show promising results and the potential to significantly decrease the metal artefacts in all the parameters used in the energy analysis at p < 0.0001, while preserving the attenuation profile of SPCCT images.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3439861</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0005-6859-0144</orcidid><orcidid>https://orcid.org/0009-0006-7881-4399</orcidid><orcidid>https://orcid.org/0000-0002-6633-6223</orcidid><orcidid>https://orcid.org/0000-0002-0190-0700</orcidid><orcidid>https://orcid.org/0000-0002-0040-1723</orcidid><orcidid>https://orcid.org/0009-0009-2233-0856</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.109735-109749 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2024_3439861 |
source | Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library |
subjects | Algorithms Aluminum Attenuation Bins Computed tomography Computed tomography (CT) Error analysis Hydroxyapatite Iodine Machine learning Mars Medical imaging metal artefacts reduction (MAR) Parameter identification Photon beams Photonics Photons Root-mean-square errors Signal to noise ratio spectral photon-counting CT (SPCCT) Steel Training |
title | Development of Residual Dense U-Net (RDU-Net)-Based Metal Artefacts Reduction Technique Using Spectral Photon Counting CT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A57%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Residual%20Dense%20U-Net%20(RDU-Net)-Based%20Metal%20Artefacts%20Reduction%20Technique%20Using%20Spectral%20Photon%20Counting%20CT&rft.jtitle=IEEE%20access&rft.au=Khan,%20Osama&rft.date=2024&rft.volume=12&rft.spage=109735&rft.epage=109749&rft.pages=109735-109749&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3439861&rft_dat=%3Cproquest_cross%3E3092918475%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092918475&rft_id=info:pmid/&rft_ieee_id=10630472&rft_doaj_id=oai_doaj_org_article_0e4116dc1efa4e30aa94fddefd22ac6c&rfr_iscdi=true |