Development of Residual Dense U-Net (RDU-Net)-Based Metal Artefacts Reduction Technique Using Spectral Photon Counting CT

Metal induced artefacts in computed tomography (CT) images are primarily caused by beam hardening, scatter effects, and photon starvation. These artefacts impede the characterization of fine anatomical structures and compromise the diagnostic value of the CT images. We aim to develop an innovative m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.109735-109749
Hauptverfasser: Khan, Osama, Tariq, Briya, Francis, Nadine, Maalej, Nabil, Behouch, Abderaouf, Kashif, Amer, Waris, Asim, Raja, Aamir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 109749
container_issue
container_start_page 109735
container_title IEEE access
container_volume 12
creator Khan, Osama
Tariq, Briya
Francis, Nadine
Maalej, Nabil
Behouch, Abderaouf
Kashif, Amer
Waris, Asim
Raja, Aamir
description Metal induced artefacts in computed tomography (CT) images are primarily caused by beam hardening, scatter effects, and photon starvation. These artefacts impede the characterization of fine anatomical structures and compromise the diagnostic value of the CT images. We aim to develop an innovative machine learning-based technique called residual dense U-Net (RDU-Net), specifically for spectral photon-counting CT (SPCCT), to mitigate metal artefacts across all energy bins. The proposed model was quantitatively evaluated, with and without the metal artefact reduction (MAR) algorithm, using line profiles, histogram analysis, signal-to-noise ratio (SNR), root mean squared error (RMSE), and structural similarity index measure (SSIM). The results show significant improvements with the average SNR increasing from 3.37 to 17.40 across the five energy bins after the application of the MAR algorithm. The average RMSE decreased from 0.016 to 0.001, and the average SSIM increased by 34.9%. The study also evaluated material density images of hydroxyapatite (HA) and iodine, with and without the MAR algorithm, using the receiver operating characteristic (ROC) paradigm. The results show improved accuracy in the material identification for HA (86% to 91%) and iodine (84% to 93%) after MAR. Overall, the evaluation of the model show promising results and the potential to significantly decrease the metal artefacts in all the parameters used in the energy analysis at p < 0.0001, while preserving the attenuation profile of SPCCT images.
doi_str_mv 10.1109/ACCESS.2024.3439861
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3439861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10630472</ieee_id><doaj_id>oai_doaj_org_article_0e4116dc1efa4e30aa94fddefd22ac6c</doaj_id><sourcerecordid>3092918475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-353959e7754ee192ea0e7f518bb2bca7b66f7c4d23de772e32371b9c454971b33</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIoMIXwCESFzik-JU4PpaUl8RLtD1bjr0pqdq42A4Sf49LEMIXj3ZnZnc1SXKK0RhjJK4mVXUzm40JImxMGRVlgfeSI4ILkdGcFvv_8GFy4v0KxVfGUs6Pkq8pfMLabjfQhdQ26Rv41vRqnU6h85AusmcI6cXb9AdcZtfKg0mfIETGxAVolA4-ikyvQ2u7dA76vWs_-qj0bbdMZ1vQwUXy67sNsV_Zvgu7RjU_Tg4atfZw8vuPksXtzby6zx5f7h6qyWOmSSnCbm2RC-A8ZwBYEFAIeJPjsq5JrRWvi6LhmhlCTSQRoIRyXAvNciYioHSUPAy-xqqV3Lp2o9yXtKqVPwXrllK50Oo1SAQM48JoHO9iQJFSgjXGQGMIUbrQ0et88No6G4_0Qa5s77q4vqRIEIFLxvPIogNLO-u9g-ZvKkZyF5kcIpO7yORvZFF1NqhaAPinKChinNBvqE6SJA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092918475</pqid></control><display><type>article</type><title>Development of Residual Dense U-Net (RDU-Net)-Based Metal Artefacts Reduction Technique Using Spectral Photon Counting CT</title><source>Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Khan, Osama ; Tariq, Briya ; Francis, Nadine ; Maalej, Nabil ; Behouch, Abderaouf ; Kashif, Amer ; Waris, Asim ; Raja, Aamir</creator><creatorcontrib>Khan, Osama ; Tariq, Briya ; Francis, Nadine ; Maalej, Nabil ; Behouch, Abderaouf ; Kashif, Amer ; Waris, Asim ; Raja, Aamir</creatorcontrib><description>Metal induced artefacts in computed tomography (CT) images are primarily caused by beam hardening, scatter effects, and photon starvation. These artefacts impede the characterization of fine anatomical structures and compromise the diagnostic value of the CT images. We aim to develop an innovative machine learning-based technique called residual dense U-Net (RDU-Net), specifically for spectral photon-counting CT (SPCCT), to mitigate metal artefacts across all energy bins. The proposed model was quantitatively evaluated, with and without the metal artefact reduction (MAR) algorithm, using line profiles, histogram analysis, signal-to-noise ratio (SNR), root mean squared error (RMSE), and structural similarity index measure (SSIM). The results show significant improvements with the average SNR increasing from 3.37 to 17.40 across the five energy bins after the application of the MAR algorithm. The average RMSE decreased from 0.016 to 0.001, and the average SSIM increased by 34.9%. The study also evaluated material density images of hydroxyapatite (HA) and iodine, with and without the MAR algorithm, using the receiver operating characteristic (ROC) paradigm. The results show improved accuracy in the material identification for HA (86% to 91%) and iodine (84% to 93%) after MAR. Overall, the evaluation of the model show promising results and the potential to significantly decrease the metal artefacts in all the parameters used in the energy analysis at p &lt; 0.0001, while preserving the attenuation profile of SPCCT images.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3439861</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Aluminum ; Attenuation ; Bins ; Computed tomography ; Computed tomography (CT) ; Error analysis ; Hydroxyapatite ; Iodine ; Machine learning ; Mars ; Medical imaging ; metal artefacts reduction (MAR) ; Parameter identification ; Photon beams ; Photonics ; Photons ; Root-mean-square errors ; Signal to noise ratio ; spectral photon-counting CT (SPCCT) ; Steel ; Training</subject><ispartof>IEEE access, 2024, Vol.12, p.109735-109749</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-353959e7754ee192ea0e7f518bb2bca7b66f7c4d23de772e32371b9c454971b33</cites><orcidid>0009-0005-6859-0144 ; 0009-0006-7881-4399 ; 0000-0002-6633-6223 ; 0000-0002-0190-0700 ; 0000-0002-0040-1723 ; 0009-0009-2233-0856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10630472$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Khan, Osama</creatorcontrib><creatorcontrib>Tariq, Briya</creatorcontrib><creatorcontrib>Francis, Nadine</creatorcontrib><creatorcontrib>Maalej, Nabil</creatorcontrib><creatorcontrib>Behouch, Abderaouf</creatorcontrib><creatorcontrib>Kashif, Amer</creatorcontrib><creatorcontrib>Waris, Asim</creatorcontrib><creatorcontrib>Raja, Aamir</creatorcontrib><title>Development of Residual Dense U-Net (RDU-Net)-Based Metal Artefacts Reduction Technique Using Spectral Photon Counting CT</title><title>IEEE access</title><addtitle>Access</addtitle><description>Metal induced artefacts in computed tomography (CT) images are primarily caused by beam hardening, scatter effects, and photon starvation. These artefacts impede the characterization of fine anatomical structures and compromise the diagnostic value of the CT images. We aim to develop an innovative machine learning-based technique called residual dense U-Net (RDU-Net), specifically for spectral photon-counting CT (SPCCT), to mitigate metal artefacts across all energy bins. The proposed model was quantitatively evaluated, with and without the metal artefact reduction (MAR) algorithm, using line profiles, histogram analysis, signal-to-noise ratio (SNR), root mean squared error (RMSE), and structural similarity index measure (SSIM). The results show significant improvements with the average SNR increasing from 3.37 to 17.40 across the five energy bins after the application of the MAR algorithm. The average RMSE decreased from 0.016 to 0.001, and the average SSIM increased by 34.9%. The study also evaluated material density images of hydroxyapatite (HA) and iodine, with and without the MAR algorithm, using the receiver operating characteristic (ROC) paradigm. The results show improved accuracy in the material identification for HA (86% to 91%) and iodine (84% to 93%) after MAR. Overall, the evaluation of the model show promising results and the potential to significantly decrease the metal artefacts in all the parameters used in the energy analysis at p &lt; 0.0001, while preserving the attenuation profile of SPCCT images.</description><subject>Algorithms</subject><subject>Aluminum</subject><subject>Attenuation</subject><subject>Bins</subject><subject>Computed tomography</subject><subject>Computed tomography (CT)</subject><subject>Error analysis</subject><subject>Hydroxyapatite</subject><subject>Iodine</subject><subject>Machine learning</subject><subject>Mars</subject><subject>Medical imaging</subject><subject>metal artefacts reduction (MAR)</subject><subject>Parameter identification</subject><subject>Photon beams</subject><subject>Photonics</subject><subject>Photons</subject><subject>Root-mean-square errors</subject><subject>Signal to noise ratio</subject><subject>spectral photon-counting CT (SPCCT)</subject><subject>Steel</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIoMIXwCESFzik-JU4PpaUl8RLtD1bjr0pqdq42A4Sf49LEMIXj3ZnZnc1SXKK0RhjJK4mVXUzm40JImxMGRVlgfeSI4ILkdGcFvv_8GFy4v0KxVfGUs6Pkq8pfMLabjfQhdQ26Rv41vRqnU6h85AusmcI6cXb9AdcZtfKg0mfIETGxAVolA4-ikyvQ2u7dA76vWs_-qj0bbdMZ1vQwUXy67sNsV_Zvgu7RjU_Tg4atfZw8vuPksXtzby6zx5f7h6qyWOmSSnCbm2RC-A8ZwBYEFAIeJPjsq5JrRWvi6LhmhlCTSQRoIRyXAvNciYioHSUPAy-xqqV3Lp2o9yXtKqVPwXrllK50Oo1SAQM48JoHO9iQJFSgjXGQGMIUbrQ0et88No6G4_0Qa5s77q4vqRIEIFLxvPIogNLO-u9g-ZvKkZyF5kcIpO7yORvZFF1NqhaAPinKChinNBvqE6SJA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Khan, Osama</creator><creator>Tariq, Briya</creator><creator>Francis, Nadine</creator><creator>Maalej, Nabil</creator><creator>Behouch, Abderaouf</creator><creator>Kashif, Amer</creator><creator>Waris, Asim</creator><creator>Raja, Aamir</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0005-6859-0144</orcidid><orcidid>https://orcid.org/0009-0006-7881-4399</orcidid><orcidid>https://orcid.org/0000-0002-6633-6223</orcidid><orcidid>https://orcid.org/0000-0002-0190-0700</orcidid><orcidid>https://orcid.org/0000-0002-0040-1723</orcidid><orcidid>https://orcid.org/0009-0009-2233-0856</orcidid></search><sort><creationdate>2024</creationdate><title>Development of Residual Dense U-Net (RDU-Net)-Based Metal Artefacts Reduction Technique Using Spectral Photon Counting CT</title><author>Khan, Osama ; Tariq, Briya ; Francis, Nadine ; Maalej, Nabil ; Behouch, Abderaouf ; Kashif, Amer ; Waris, Asim ; Raja, Aamir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-353959e7754ee192ea0e7f518bb2bca7b66f7c4d23de772e32371b9c454971b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Aluminum</topic><topic>Attenuation</topic><topic>Bins</topic><topic>Computed tomography</topic><topic>Computed tomography (CT)</topic><topic>Error analysis</topic><topic>Hydroxyapatite</topic><topic>Iodine</topic><topic>Machine learning</topic><topic>Mars</topic><topic>Medical imaging</topic><topic>metal artefacts reduction (MAR)</topic><topic>Parameter identification</topic><topic>Photon beams</topic><topic>Photonics</topic><topic>Photons</topic><topic>Root-mean-square errors</topic><topic>Signal to noise ratio</topic><topic>spectral photon-counting CT (SPCCT)</topic><topic>Steel</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Osama</creatorcontrib><creatorcontrib>Tariq, Briya</creatorcontrib><creatorcontrib>Francis, Nadine</creatorcontrib><creatorcontrib>Maalej, Nabil</creatorcontrib><creatorcontrib>Behouch, Abderaouf</creatorcontrib><creatorcontrib>Kashif, Amer</creatorcontrib><creatorcontrib>Waris, Asim</creatorcontrib><creatorcontrib>Raja, Aamir</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Osama</au><au>Tariq, Briya</au><au>Francis, Nadine</au><au>Maalej, Nabil</au><au>Behouch, Abderaouf</au><au>Kashif, Amer</au><au>Waris, Asim</au><au>Raja, Aamir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Residual Dense U-Net (RDU-Net)-Based Metal Artefacts Reduction Technique Using Spectral Photon Counting CT</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>109735</spage><epage>109749</epage><pages>109735-109749</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Metal induced artefacts in computed tomography (CT) images are primarily caused by beam hardening, scatter effects, and photon starvation. These artefacts impede the characterization of fine anatomical structures and compromise the diagnostic value of the CT images. We aim to develop an innovative machine learning-based technique called residual dense U-Net (RDU-Net), specifically for spectral photon-counting CT (SPCCT), to mitigate metal artefacts across all energy bins. The proposed model was quantitatively evaluated, with and without the metal artefact reduction (MAR) algorithm, using line profiles, histogram analysis, signal-to-noise ratio (SNR), root mean squared error (RMSE), and structural similarity index measure (SSIM). The results show significant improvements with the average SNR increasing from 3.37 to 17.40 across the five energy bins after the application of the MAR algorithm. The average RMSE decreased from 0.016 to 0.001, and the average SSIM increased by 34.9%. The study also evaluated material density images of hydroxyapatite (HA) and iodine, with and without the MAR algorithm, using the receiver operating characteristic (ROC) paradigm. The results show improved accuracy in the material identification for HA (86% to 91%) and iodine (84% to 93%) after MAR. Overall, the evaluation of the model show promising results and the potential to significantly decrease the metal artefacts in all the parameters used in the energy analysis at p &lt; 0.0001, while preserving the attenuation profile of SPCCT images.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3439861</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0005-6859-0144</orcidid><orcidid>https://orcid.org/0009-0006-7881-4399</orcidid><orcidid>https://orcid.org/0000-0002-6633-6223</orcidid><orcidid>https://orcid.org/0000-0002-0190-0700</orcidid><orcidid>https://orcid.org/0000-0002-0040-1723</orcidid><orcidid>https://orcid.org/0009-0009-2233-0856</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.109735-109749
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3439861
source Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library
subjects Algorithms
Aluminum
Attenuation
Bins
Computed tomography
Computed tomography (CT)
Error analysis
Hydroxyapatite
Iodine
Machine learning
Mars
Medical imaging
metal artefacts reduction (MAR)
Parameter identification
Photon beams
Photonics
Photons
Root-mean-square errors
Signal to noise ratio
spectral photon-counting CT (SPCCT)
Steel
Training
title Development of Residual Dense U-Net (RDU-Net)-Based Metal Artefacts Reduction Technique Using Spectral Photon Counting CT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A57%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Residual%20Dense%20U-Net%20(RDU-Net)-Based%20Metal%20Artefacts%20Reduction%20Technique%20Using%20Spectral%20Photon%20Counting%20CT&rft.jtitle=IEEE%20access&rft.au=Khan,%20Osama&rft.date=2024&rft.volume=12&rft.spage=109735&rft.epage=109749&rft.pages=109735-109749&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3439861&rft_dat=%3Cproquest_cross%3E3092918475%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092918475&rft_id=info:pmid/&rft_ieee_id=10630472&rft_doaj_id=oai_doaj_org_article_0e4116dc1efa4e30aa94fddefd22ac6c&rfr_iscdi=true