Underwater Target Detection Based on Improved YOLOv7 Algorithm With BiFusion Neck Structure and MPDIoU Loss Function

Underwater target detection has developed greatly in recent years. However, the accuracy of underwater target detection is limited by the complex underwater environment. Based on YOLOv7, we propose an underwater object detection algorithm model to improve precision and confidence (BiFusion Neck modu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.105165-105177
Hauptverfasser: Ou, Jinyu, Shen, Yijun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105177
container_issue
container_start_page 105165
container_title IEEE access
container_volume 12
creator Ou, Jinyu
Shen, Yijun
description Underwater target detection has developed greatly in recent years. However, the accuracy of underwater target detection is limited by the complex underwater environment. Based on YOLOv7, we propose an underwater object detection algorithm model to improve precision and confidence (BiFusion Neck module and a MPDIoU loss function). Compared to traditional networks module, the Bifusion Neck module preserves more features from the lower layers by utilizing the output of the P2 feature layer. Moreover, the loss function was improved on the basis of IoU introducing Minimum Point Distance. Finally, the LSKA attention mechanism is introduced to enhance the feature extraction of targets at different scales. The experimental results demonstrate that the BFD-YOLO model proposed in this study achieves an average detection accuracy(mAP50) of 84.8% on a customized dataset, surpassing the performance of the YOLOv7 algorithm by 11.5% and outperforming other tested algorithms. Furthermore, the BFD-YOLO algorithm exhibits strong performance on various datasets and demonstrates superior generalization capabilities.
doi_str_mv 10.1109/ACCESS.2024.3436073
format Article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3436073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10616140</ieee_id><doaj_id>oai_doaj_org_article_845a14e3eb27418c9b1ee44d8487557b</doaj_id><sourcerecordid>oai_doaj_org_article_845a14e3eb27418c9b1ee44d8487557b</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-aa97f0521c6f0ac6af2cded63909dabed6169511da07a395d4aaa69bfb8bec763</originalsourceid><addsrcrecordid>eNpNkd1KAzEQhRdRsGifQC_yAq3JJpvsXvZXC9UKbRGvwmwyW7e23ZJNK7696Q_SuZg5DJyPGU4UPTDaZoxmT51ebzCdtmMaizYXXFLFr6JGzGTW4gmX1xf6NmrW9ZKGSsMqUY3IzzcW3Q94dGQGboGe9NGj8WW1IV2o0ZIgRuutq_ZBf07Gk70indWicqX_WpOP0Em3HO7qg-ENzTeZerczfueQwMaS1_f-qJqTcVXXZLjbHMH30U0Bqxqb53kXzYeDWe-lNZ48j3qdccvEkvkWQKYKmsTMyIKCkVDExqKVPKOZhTyowxOMWaAKeJZYAQAyy4s8zdEoye-i0YlrK1jqrSvX4H51BaU-Liq30OB8aVaoU5EAE8gxj5VgqclyhiiETUWqkkTlgcVPLOPCKw6Lfx6j-pCDPuWgDznocw7B9XhylYh44QiXM0H5H_EohTI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Underwater Target Detection Based on Improved YOLOv7 Algorithm With BiFusion Neck Structure and MPDIoU Loss Function</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ou, Jinyu ; Shen, Yijun</creator><creatorcontrib>Ou, Jinyu ; Shen, Yijun</creatorcontrib><description>Underwater target detection has developed greatly in recent years. However, the accuracy of underwater target detection is limited by the complex underwater environment. Based on YOLOv7, we propose an underwater object detection algorithm model to improve precision and confidence (BiFusion Neck module and a MPDIoU loss function). Compared to traditional networks module, the Bifusion Neck module preserves more features from the lower layers by utilizing the output of the P2 feature layer. Moreover, the loss function was improved on the basis of IoU introducing Minimum Point Distance. Finally, the LSKA attention mechanism is introduced to enhance the feature extraction of targets at different scales. The experimental results demonstrate that the BFD-YOLO model proposed in this study achieves an average detection accuracy(mAP50) of 84.8% on a customized dataset, surpassing the performance of the YOLOv7 algorithm by 11.5% and outperforming other tested algorithms. Furthermore, the BFD-YOLO algorithm exhibits strong performance on various datasets and demonstrates superior generalization capabilities.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3436073</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; BFD-YOLO ; BiFusion ; Biological system modeling ; Feature extraction ; Image color analysis ; LSKA ; MPDIoU ; Object detection ; Target recognition ; Underwater object detection ; Underwater tracking ; YOLO ; YOLOv7</subject><ispartof>IEEE access, 2024, Vol.12, p.105165-105177</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-aa97f0521c6f0ac6af2cded63909dabed6169511da07a395d4aaa69bfb8bec763</cites><orcidid>0009-0007-1946-6862 ; 0009-0001-0233-3031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10616140$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2101,4023,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Ou, Jinyu</creatorcontrib><creatorcontrib>Shen, Yijun</creatorcontrib><title>Underwater Target Detection Based on Improved YOLOv7 Algorithm With BiFusion Neck Structure and MPDIoU Loss Function</title><title>IEEE access</title><addtitle>Access</addtitle><description>Underwater target detection has developed greatly in recent years. However, the accuracy of underwater target detection is limited by the complex underwater environment. Based on YOLOv7, we propose an underwater object detection algorithm model to improve precision and confidence (BiFusion Neck module and a MPDIoU loss function). Compared to traditional networks module, the Bifusion Neck module preserves more features from the lower layers by utilizing the output of the P2 feature layer. Moreover, the loss function was improved on the basis of IoU introducing Minimum Point Distance. Finally, the LSKA attention mechanism is introduced to enhance the feature extraction of targets at different scales. The experimental results demonstrate that the BFD-YOLO model proposed in this study achieves an average detection accuracy(mAP50) of 84.8% on a customized dataset, surpassing the performance of the YOLOv7 algorithm by 11.5% and outperforming other tested algorithms. Furthermore, the BFD-YOLO algorithm exhibits strong performance on various datasets and demonstrates superior generalization capabilities.</description><subject>Accuracy</subject><subject>BFD-YOLO</subject><subject>BiFusion</subject><subject>Biological system modeling</subject><subject>Feature extraction</subject><subject>Image color analysis</subject><subject>LSKA</subject><subject>MPDIoU</subject><subject>Object detection</subject><subject>Target recognition</subject><subject>Underwater object detection</subject><subject>Underwater tracking</subject><subject>YOLO</subject><subject>YOLOv7</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd1KAzEQhRdRsGifQC_yAq3JJpvsXvZXC9UKbRGvwmwyW7e23ZJNK7696Q_SuZg5DJyPGU4UPTDaZoxmT51ebzCdtmMaizYXXFLFr6JGzGTW4gmX1xf6NmrW9ZKGSsMqUY3IzzcW3Q94dGQGboGe9NGj8WW1IV2o0ZIgRuutq_ZBf07Gk70indWicqX_WpOP0Em3HO7qg-ENzTeZerczfueQwMaS1_f-qJqTcVXXZLjbHMH30U0Bqxqb53kXzYeDWe-lNZ48j3qdccvEkvkWQKYKmsTMyIKCkVDExqKVPKOZhTyowxOMWaAKeJZYAQAyy4s8zdEoye-i0YlrK1jqrSvX4H51BaU-Liq30OB8aVaoU5EAE8gxj5VgqclyhiiETUWqkkTlgcVPLOPCKw6Lfx6j-pCDPuWgDznocw7B9XhylYh44QiXM0H5H_EohTI</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ou, Jinyu</creator><creator>Shen, Yijun</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0007-1946-6862</orcidid><orcidid>https://orcid.org/0009-0001-0233-3031</orcidid></search><sort><creationdate>2024</creationdate><title>Underwater Target Detection Based on Improved YOLOv7 Algorithm With BiFusion Neck Structure and MPDIoU Loss Function</title><author>Ou, Jinyu ; Shen, Yijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-aa97f0521c6f0ac6af2cded63909dabed6169511da07a395d4aaa69bfb8bec763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>BFD-YOLO</topic><topic>BiFusion</topic><topic>Biological system modeling</topic><topic>Feature extraction</topic><topic>Image color analysis</topic><topic>LSKA</topic><topic>MPDIoU</topic><topic>Object detection</topic><topic>Target recognition</topic><topic>Underwater object detection</topic><topic>Underwater tracking</topic><topic>YOLO</topic><topic>YOLOv7</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ou, Jinyu</creatorcontrib><creatorcontrib>Shen, Yijun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ou, Jinyu</au><au>Shen, Yijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Underwater Target Detection Based on Improved YOLOv7 Algorithm With BiFusion Neck Structure and MPDIoU Loss Function</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>105165</spage><epage>105177</epage><pages>105165-105177</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Underwater target detection has developed greatly in recent years. However, the accuracy of underwater target detection is limited by the complex underwater environment. Based on YOLOv7, we propose an underwater object detection algorithm model to improve precision and confidence (BiFusion Neck module and a MPDIoU loss function). Compared to traditional networks module, the Bifusion Neck module preserves more features from the lower layers by utilizing the output of the P2 feature layer. Moreover, the loss function was improved on the basis of IoU introducing Minimum Point Distance. Finally, the LSKA attention mechanism is introduced to enhance the feature extraction of targets at different scales. The experimental results demonstrate that the BFD-YOLO model proposed in this study achieves an average detection accuracy(mAP50) of 84.8% on a customized dataset, surpassing the performance of the YOLOv7 algorithm by 11.5% and outperforming other tested algorithms. Furthermore, the BFD-YOLO algorithm exhibits strong performance on various datasets and demonstrates superior generalization capabilities.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3436073</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0007-1946-6862</orcidid><orcidid>https://orcid.org/0009-0001-0233-3031</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.105165-105177
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3436073
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
BFD-YOLO
BiFusion
Biological system modeling
Feature extraction
Image color analysis
LSKA
MPDIoU
Object detection
Target recognition
Underwater object detection
Underwater tracking
YOLO
YOLOv7
title Underwater Target Detection Based on Improved YOLOv7 Algorithm With BiFusion Neck Structure and MPDIoU Loss Function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A36%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Underwater%20Target%20Detection%20Based%20on%20Improved%20YOLOv7%20Algorithm%20With%20BiFusion%20Neck%20Structure%20and%20MPDIoU%20Loss%20Function&rft.jtitle=IEEE%20access&rft.au=Ou,%20Jinyu&rft.date=2024&rft.volume=12&rft.spage=105165&rft.epage=105177&rft.pages=105165-105177&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3436073&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_845a14e3eb27418c9b1ee44d8487557b%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10616140&rft_doaj_id=oai_doaj_org_article_845a14e3eb27418c9b1ee44d8487557b&rfr_iscdi=true