Underwater Target Detection Based on Improved YOLOv7 Algorithm With BiFusion Neck Structure and MPDIoU Loss Function
Underwater target detection has developed greatly in recent years. However, the accuracy of underwater target detection is limited by the complex underwater environment. Based on YOLOv7, we propose an underwater object detection algorithm model to improve precision and confidence (BiFusion Neck modu...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.105165-105177 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105177 |
---|---|
container_issue | |
container_start_page | 105165 |
container_title | IEEE access |
container_volume | 12 |
creator | Ou, Jinyu Shen, Yijun |
description | Underwater target detection has developed greatly in recent years. However, the accuracy of underwater target detection is limited by the complex underwater environment. Based on YOLOv7, we propose an underwater object detection algorithm model to improve precision and confidence (BiFusion Neck module and a MPDIoU loss function). Compared to traditional networks module, the Bifusion Neck module preserves more features from the lower layers by utilizing the output of the P2 feature layer. Moreover, the loss function was improved on the basis of IoU introducing Minimum Point Distance. Finally, the LSKA attention mechanism is introduced to enhance the feature extraction of targets at different scales. The experimental results demonstrate that the BFD-YOLO model proposed in this study achieves an average detection accuracy(mAP50) of 84.8% on a customized dataset, surpassing the performance of the YOLOv7 algorithm by 11.5% and outperforming other tested algorithms. Furthermore, the BFD-YOLO algorithm exhibits strong performance on various datasets and demonstrates superior generalization capabilities. |
doi_str_mv | 10.1109/ACCESS.2024.3436073 |
format | Article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3436073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10616140</ieee_id><doaj_id>oai_doaj_org_article_845a14e3eb27418c9b1ee44d8487557b</doaj_id><sourcerecordid>oai_doaj_org_article_845a14e3eb27418c9b1ee44d8487557b</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-aa97f0521c6f0ac6af2cded63909dabed6169511da07a395d4aaa69bfb8bec763</originalsourceid><addsrcrecordid>eNpNkd1KAzEQhRdRsGifQC_yAq3JJpvsXvZXC9UKbRGvwmwyW7e23ZJNK7696Q_SuZg5DJyPGU4UPTDaZoxmT51ebzCdtmMaizYXXFLFr6JGzGTW4gmX1xf6NmrW9ZKGSsMqUY3IzzcW3Q94dGQGboGe9NGj8WW1IV2o0ZIgRuutq_ZBf07Gk70indWicqX_WpOP0Em3HO7qg-ENzTeZerczfueQwMaS1_f-qJqTcVXXZLjbHMH30U0Bqxqb53kXzYeDWe-lNZ48j3qdccvEkvkWQKYKmsTMyIKCkVDExqKVPKOZhTyowxOMWaAKeJZYAQAyy4s8zdEoye-i0YlrK1jqrSvX4H51BaU-Liq30OB8aVaoU5EAE8gxj5VgqclyhiiETUWqkkTlgcVPLOPCKw6Lfx6j-pCDPuWgDznocw7B9XhylYh44QiXM0H5H_EohTI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Underwater Target Detection Based on Improved YOLOv7 Algorithm With BiFusion Neck Structure and MPDIoU Loss Function</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ou, Jinyu ; Shen, Yijun</creator><creatorcontrib>Ou, Jinyu ; Shen, Yijun</creatorcontrib><description>Underwater target detection has developed greatly in recent years. However, the accuracy of underwater target detection is limited by the complex underwater environment. Based on YOLOv7, we propose an underwater object detection algorithm model to improve precision and confidence (BiFusion Neck module and a MPDIoU loss function). Compared to traditional networks module, the Bifusion Neck module preserves more features from the lower layers by utilizing the output of the P2 feature layer. Moreover, the loss function was improved on the basis of IoU introducing Minimum Point Distance. Finally, the LSKA attention mechanism is introduced to enhance the feature extraction of targets at different scales. The experimental results demonstrate that the BFD-YOLO model proposed in this study achieves an average detection accuracy(mAP50) of 84.8% on a customized dataset, surpassing the performance of the YOLOv7 algorithm by 11.5% and outperforming other tested algorithms. Furthermore, the BFD-YOLO algorithm exhibits strong performance on various datasets and demonstrates superior generalization capabilities.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3436073</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; BFD-YOLO ; BiFusion ; Biological system modeling ; Feature extraction ; Image color analysis ; LSKA ; MPDIoU ; Object detection ; Target recognition ; Underwater object detection ; Underwater tracking ; YOLO ; YOLOv7</subject><ispartof>IEEE access, 2024, Vol.12, p.105165-105177</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-aa97f0521c6f0ac6af2cded63909dabed6169511da07a395d4aaa69bfb8bec763</cites><orcidid>0009-0007-1946-6862 ; 0009-0001-0233-3031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10616140$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2101,4023,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Ou, Jinyu</creatorcontrib><creatorcontrib>Shen, Yijun</creatorcontrib><title>Underwater Target Detection Based on Improved YOLOv7 Algorithm With BiFusion Neck Structure and MPDIoU Loss Function</title><title>IEEE access</title><addtitle>Access</addtitle><description>Underwater target detection has developed greatly in recent years. However, the accuracy of underwater target detection is limited by the complex underwater environment. Based on YOLOv7, we propose an underwater object detection algorithm model to improve precision and confidence (BiFusion Neck module and a MPDIoU loss function). Compared to traditional networks module, the Bifusion Neck module preserves more features from the lower layers by utilizing the output of the P2 feature layer. Moreover, the loss function was improved on the basis of IoU introducing Minimum Point Distance. Finally, the LSKA attention mechanism is introduced to enhance the feature extraction of targets at different scales. The experimental results demonstrate that the BFD-YOLO model proposed in this study achieves an average detection accuracy(mAP50) of 84.8% on a customized dataset, surpassing the performance of the YOLOv7 algorithm by 11.5% and outperforming other tested algorithms. Furthermore, the BFD-YOLO algorithm exhibits strong performance on various datasets and demonstrates superior generalization capabilities.</description><subject>Accuracy</subject><subject>BFD-YOLO</subject><subject>BiFusion</subject><subject>Biological system modeling</subject><subject>Feature extraction</subject><subject>Image color analysis</subject><subject>LSKA</subject><subject>MPDIoU</subject><subject>Object detection</subject><subject>Target recognition</subject><subject>Underwater object detection</subject><subject>Underwater tracking</subject><subject>YOLO</subject><subject>YOLOv7</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd1KAzEQhRdRsGifQC_yAq3JJpvsXvZXC9UKbRGvwmwyW7e23ZJNK7696Q_SuZg5DJyPGU4UPTDaZoxmT51ebzCdtmMaizYXXFLFr6JGzGTW4gmX1xf6NmrW9ZKGSsMqUY3IzzcW3Q94dGQGboGe9NGj8WW1IV2o0ZIgRuutq_ZBf07Gk70indWicqX_WpOP0Em3HO7qg-ENzTeZerczfueQwMaS1_f-qJqTcVXXZLjbHMH30U0Bqxqb53kXzYeDWe-lNZ48j3qdccvEkvkWQKYKmsTMyIKCkVDExqKVPKOZhTyowxOMWaAKeJZYAQAyy4s8zdEoye-i0YlrK1jqrSvX4H51BaU-Liq30OB8aVaoU5EAE8gxj5VgqclyhiiETUWqkkTlgcVPLOPCKw6Lfx6j-pCDPuWgDznocw7B9XhylYh44QiXM0H5H_EohTI</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ou, Jinyu</creator><creator>Shen, Yijun</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0007-1946-6862</orcidid><orcidid>https://orcid.org/0009-0001-0233-3031</orcidid></search><sort><creationdate>2024</creationdate><title>Underwater Target Detection Based on Improved YOLOv7 Algorithm With BiFusion Neck Structure and MPDIoU Loss Function</title><author>Ou, Jinyu ; Shen, Yijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-aa97f0521c6f0ac6af2cded63909dabed6169511da07a395d4aaa69bfb8bec763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>BFD-YOLO</topic><topic>BiFusion</topic><topic>Biological system modeling</topic><topic>Feature extraction</topic><topic>Image color analysis</topic><topic>LSKA</topic><topic>MPDIoU</topic><topic>Object detection</topic><topic>Target recognition</topic><topic>Underwater object detection</topic><topic>Underwater tracking</topic><topic>YOLO</topic><topic>YOLOv7</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ou, Jinyu</creatorcontrib><creatorcontrib>Shen, Yijun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ou, Jinyu</au><au>Shen, Yijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Underwater Target Detection Based on Improved YOLOv7 Algorithm With BiFusion Neck Structure and MPDIoU Loss Function</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>105165</spage><epage>105177</epage><pages>105165-105177</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Underwater target detection has developed greatly in recent years. However, the accuracy of underwater target detection is limited by the complex underwater environment. Based on YOLOv7, we propose an underwater object detection algorithm model to improve precision and confidence (BiFusion Neck module and a MPDIoU loss function). Compared to traditional networks module, the Bifusion Neck module preserves more features from the lower layers by utilizing the output of the P2 feature layer. Moreover, the loss function was improved on the basis of IoU introducing Minimum Point Distance. Finally, the LSKA attention mechanism is introduced to enhance the feature extraction of targets at different scales. The experimental results demonstrate that the BFD-YOLO model proposed in this study achieves an average detection accuracy(mAP50) of 84.8% on a customized dataset, surpassing the performance of the YOLOv7 algorithm by 11.5% and outperforming other tested algorithms. Furthermore, the BFD-YOLO algorithm exhibits strong performance on various datasets and demonstrates superior generalization capabilities.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3436073</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0007-1946-6862</orcidid><orcidid>https://orcid.org/0009-0001-0233-3031</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.105165-105177 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2024_3436073 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy BFD-YOLO BiFusion Biological system modeling Feature extraction Image color analysis LSKA MPDIoU Object detection Target recognition Underwater object detection Underwater tracking YOLO YOLOv7 |
title | Underwater Target Detection Based on Improved YOLOv7 Algorithm With BiFusion Neck Structure and MPDIoU Loss Function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A36%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Underwater%20Target%20Detection%20Based%20on%20Improved%20YOLOv7%20Algorithm%20With%20BiFusion%20Neck%20Structure%20and%20MPDIoU%20Loss%20Function&rft.jtitle=IEEE%20access&rft.au=Ou,%20Jinyu&rft.date=2024&rft.volume=12&rft.spage=105165&rft.epage=105177&rft.pages=105165-105177&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3436073&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_845a14e3eb27418c9b1ee44d8487557b%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10616140&rft_doaj_id=oai_doaj_org_article_845a14e3eb27418c9b1ee44d8487557b&rfr_iscdi=true |