Human Velocity Estimation Using Kalman Filter and Least Squares With Adjustable Window Sizes for Mobile Robots

For autonomous mobile robots to work safely in human-coexistent environments, human-velocity estimation is essential. However, the human body periodically fluctuates to the front, rear, right, and left while walking. Also, a significant estimation error occurs due to the vibration of sensors install...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.103260-103270
Hauptverfasser: Kamezaki, Mitsuhiro, Hirayama, Michiaki, Kono, Ryosuke, Tsuburaya, Yusuke, Sugano, Shigeki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 103270
container_issue
container_start_page 103260
container_title IEEE access
container_volume 12
creator Kamezaki, Mitsuhiro
Hirayama, Michiaki
Kono, Ryosuke
Tsuburaya, Yusuke
Sugano, Shigeki
description For autonomous mobile robots to work safely in human-coexistent environments, human-velocity estimation is essential. However, the human body periodically fluctuates to the front, rear, right, and left while walking. Also, a significant estimation error occurs due to the vibration of sensors installed in the robot. Quick trajectory adjustment requires high-accuracy and low-latency estimation, but these are in a trade-off relationship. We thus propose a human velocity estimation system (VES) using the Kalman filter (KF) and least squares (LS) with adjustable window size (AWS) to control the accuracy and latency. The VES adjusts two window sizes to calculate a system noise distribution for KF and a velocity vector for LS using a newly proposed cost function, including accuracy (direction and magnitude) and latency (time delay) costs. To select window sizes suitable for walking trajectories and individual gaits, we collected human walking data, calculated the three costs, and selected the window sizes with the minimum cost. The results of experiments using a laser range finder installed on a mobile robot indicate that the cost function could reveal window sizes to increase accuracy or reduce latency depending on walking trajectories and individual gaits, and the VES with AWS could enhance the performance of estimating human walking velocity for mobile robots.
doi_str_mv 10.1109/ACCESS.2024.3432590
format Article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3432590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10606482</ieee_id><doaj_id>oai_doaj_org_article_856d078a0f0a48a7a382c1d1fe13fc98</doaj_id><sourcerecordid>oai_doaj_org_article_856d078a0f0a48a7a382c1d1fe13fc98</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-b0fb3f7379ea783e08a488bba89b62bf31fad5765bfe0a3ddaa645beee7fc3333</originalsourceid><addsrcrecordid>eNpNUdFOwyAUbYwmmukX6AM_0AmlpfRxWaZbnDFxTh_JpcBkqUWBxcyvl1ljPC-Xe-Cce8nJskuCx4Tg5noync5Wq3GBi3JMS1pUDT7KzgrCmpxWlB3_O59mFyFscQJPVFWfZf189wY9etada23co1mI9g2idT1aB9tv0B10hwc3tovaI-gVWmoIEa0-duB1QC82vqKJ2u5CBNnp1PfKfaKV_UqXxnl076RN_KOTLobz7MRAF_TFbx1l65vZ03SeLx9uF9PJMm8LRmIusZHU1LRuNNScasyh5FxK4I1khTSUGFBVzSppNAaqFAArK6m1rk1LE0bZYvBVDrbi3ac_-b1wYMUP4fxGgI-27bTgFVO45oANTkOgBsqLlihiNKGmbXjyooNX610IXps_P4LFIQExJCAOCYjfBJLqalDZtNU_BcOs5AX9Bml2hC4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Human Velocity Estimation Using Kalman Filter and Least Squares With Adjustable Window Sizes for Mobile Robots</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kamezaki, Mitsuhiro ; Hirayama, Michiaki ; Kono, Ryosuke ; Tsuburaya, Yusuke ; Sugano, Shigeki</creator><creatorcontrib>Kamezaki, Mitsuhiro ; Hirayama, Michiaki ; Kono, Ryosuke ; Tsuburaya, Yusuke ; Sugano, Shigeki</creatorcontrib><description>For autonomous mobile robots to work safely in human-coexistent environments, human-velocity estimation is essential. However, the human body periodically fluctuates to the front, rear, right, and left while walking. Also, a significant estimation error occurs due to the vibration of sensors installed in the robot. Quick trajectory adjustment requires high-accuracy and low-latency estimation, but these are in a trade-off relationship. We thus propose a human velocity estimation system (VES) using the Kalman filter (KF) and least squares (LS) with adjustable window size (AWS) to control the accuracy and latency. The VES adjusts two window sizes to calculate a system noise distribution for KF and a velocity vector for LS using a newly proposed cost function, including accuracy (direction and magnitude) and latency (time delay) costs. To select window sizes suitable for walking trajectories and individual gaits, we collected human walking data, calculated the three costs, and selected the window sizes with the minimum cost. The results of experiments using a laser range finder installed on a mobile robot indicate that the cost function could reveal window sizes to increase accuracy or reduce latency depending on walking trajectories and individual gaits, and the VES with AWS could enhance the performance of estimating human walking velocity for mobile robots.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3432590</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; adjustable window size ; Autonomous mobile robot ; Autonomous robots ; Estimation ; human-walking velocity estimation ; Kalman filter ; Kalman filters ; least squares ; Legged locomotion ; Mobile robots ; Robot kinematics ; Trajectory ; Velocity measurement</subject><ispartof>IEEE access, 2024, Vol.12, p.103260-103270</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-b0fb3f7379ea783e08a488bba89b62bf31fad5765bfe0a3ddaa645beee7fc3333</cites><orcidid>0000-0002-8556-8185 ; 0000-0002-9331-2446 ; 0000-0002-4377-8993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10606482$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Kamezaki, Mitsuhiro</creatorcontrib><creatorcontrib>Hirayama, Michiaki</creatorcontrib><creatorcontrib>Kono, Ryosuke</creatorcontrib><creatorcontrib>Tsuburaya, Yusuke</creatorcontrib><creatorcontrib>Sugano, Shigeki</creatorcontrib><title>Human Velocity Estimation Using Kalman Filter and Least Squares With Adjustable Window Sizes for Mobile Robots</title><title>IEEE access</title><addtitle>Access</addtitle><description>For autonomous mobile robots to work safely in human-coexistent environments, human-velocity estimation is essential. However, the human body periodically fluctuates to the front, rear, right, and left while walking. Also, a significant estimation error occurs due to the vibration of sensors installed in the robot. Quick trajectory adjustment requires high-accuracy and low-latency estimation, but these are in a trade-off relationship. We thus propose a human velocity estimation system (VES) using the Kalman filter (KF) and least squares (LS) with adjustable window size (AWS) to control the accuracy and latency. The VES adjusts two window sizes to calculate a system noise distribution for KF and a velocity vector for LS using a newly proposed cost function, including accuracy (direction and magnitude) and latency (time delay) costs. To select window sizes suitable for walking trajectories and individual gaits, we collected human walking data, calculated the three costs, and selected the window sizes with the minimum cost. The results of experiments using a laser range finder installed on a mobile robot indicate that the cost function could reveal window sizes to increase accuracy or reduce latency depending on walking trajectories and individual gaits, and the VES with AWS could enhance the performance of estimating human walking velocity for mobile robots.</description><subject>Accuracy</subject><subject>adjustable window size</subject><subject>Autonomous mobile robot</subject><subject>Autonomous robots</subject><subject>Estimation</subject><subject>human-walking velocity estimation</subject><subject>Kalman filter</subject><subject>Kalman filters</subject><subject>least squares</subject><subject>Legged locomotion</subject><subject>Mobile robots</subject><subject>Robot kinematics</subject><subject>Trajectory</subject><subject>Velocity measurement</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdFOwyAUbYwmmukX6AM_0AmlpfRxWaZbnDFxTh_JpcBkqUWBxcyvl1ljPC-Xe-Cce8nJskuCx4Tg5noync5Wq3GBi3JMS1pUDT7KzgrCmpxWlB3_O59mFyFscQJPVFWfZf189wY9etada23co1mI9g2idT1aB9tv0B10hwc3tovaI-gVWmoIEa0-duB1QC82vqKJ2u5CBNnp1PfKfaKV_UqXxnl076RN_KOTLobz7MRAF_TFbx1l65vZ03SeLx9uF9PJMm8LRmIusZHU1LRuNNScasyh5FxK4I1khTSUGFBVzSppNAaqFAArK6m1rk1LE0bZYvBVDrbi3ac_-b1wYMUP4fxGgI-27bTgFVO45oANTkOgBsqLlihiNKGmbXjyooNX610IXps_P4LFIQExJCAOCYjfBJLqalDZtNU_BcOs5AX9Bml2hC4</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Kamezaki, Mitsuhiro</creator><creator>Hirayama, Michiaki</creator><creator>Kono, Ryosuke</creator><creator>Tsuburaya, Yusuke</creator><creator>Sugano, Shigeki</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8556-8185</orcidid><orcidid>https://orcid.org/0000-0002-9331-2446</orcidid><orcidid>https://orcid.org/0000-0002-4377-8993</orcidid></search><sort><creationdate>2024</creationdate><title>Human Velocity Estimation Using Kalman Filter and Least Squares With Adjustable Window Sizes for Mobile Robots</title><author>Kamezaki, Mitsuhiro ; Hirayama, Michiaki ; Kono, Ryosuke ; Tsuburaya, Yusuke ; Sugano, Shigeki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-b0fb3f7379ea783e08a488bba89b62bf31fad5765bfe0a3ddaa645beee7fc3333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>adjustable window size</topic><topic>Autonomous mobile robot</topic><topic>Autonomous robots</topic><topic>Estimation</topic><topic>human-walking velocity estimation</topic><topic>Kalman filter</topic><topic>Kalman filters</topic><topic>least squares</topic><topic>Legged locomotion</topic><topic>Mobile robots</topic><topic>Robot kinematics</topic><topic>Trajectory</topic><topic>Velocity measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamezaki, Mitsuhiro</creatorcontrib><creatorcontrib>Hirayama, Michiaki</creatorcontrib><creatorcontrib>Kono, Ryosuke</creatorcontrib><creatorcontrib>Tsuburaya, Yusuke</creatorcontrib><creatorcontrib>Sugano, Shigeki</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamezaki, Mitsuhiro</au><au>Hirayama, Michiaki</au><au>Kono, Ryosuke</au><au>Tsuburaya, Yusuke</au><au>Sugano, Shigeki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human Velocity Estimation Using Kalman Filter and Least Squares With Adjustable Window Sizes for Mobile Robots</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>103260</spage><epage>103270</epage><pages>103260-103270</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>For autonomous mobile robots to work safely in human-coexistent environments, human-velocity estimation is essential. However, the human body periodically fluctuates to the front, rear, right, and left while walking. Also, a significant estimation error occurs due to the vibration of sensors installed in the robot. Quick trajectory adjustment requires high-accuracy and low-latency estimation, but these are in a trade-off relationship. We thus propose a human velocity estimation system (VES) using the Kalman filter (KF) and least squares (LS) with adjustable window size (AWS) to control the accuracy and latency. The VES adjusts two window sizes to calculate a system noise distribution for KF and a velocity vector for LS using a newly proposed cost function, including accuracy (direction and magnitude) and latency (time delay) costs. To select window sizes suitable for walking trajectories and individual gaits, we collected human walking data, calculated the three costs, and selected the window sizes with the minimum cost. The results of experiments using a laser range finder installed on a mobile robot indicate that the cost function could reveal window sizes to increase accuracy or reduce latency depending on walking trajectories and individual gaits, and the VES with AWS could enhance the performance of estimating human walking velocity for mobile robots.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3432590</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8556-8185</orcidid><orcidid>https://orcid.org/0000-0002-9331-2446</orcidid><orcidid>https://orcid.org/0000-0002-4377-8993</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.103260-103270
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3432590
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
adjustable window size
Autonomous mobile robot
Autonomous robots
Estimation
human-walking velocity estimation
Kalman filter
Kalman filters
least squares
Legged locomotion
Mobile robots
Robot kinematics
Trajectory
Velocity measurement
title Human Velocity Estimation Using Kalman Filter and Least Squares With Adjustable Window Sizes for Mobile Robots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A22%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20Velocity%20Estimation%20Using%20Kalman%20Filter%20and%20Least%20Squares%20With%20Adjustable%20Window%20Sizes%20for%20Mobile%20Robots&rft.jtitle=IEEE%20access&rft.au=Kamezaki,%20Mitsuhiro&rft.date=2024&rft.volume=12&rft.spage=103260&rft.epage=103270&rft.pages=103260-103270&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3432590&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_856d078a0f0a48a7a382c1d1fe13fc98%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10606482&rft_doaj_id=oai_doaj_org_article_856d078a0f0a48a7a382c1d1fe13fc98&rfr_iscdi=true