Human Velocity Estimation Using Kalman Filter and Least Squares With Adjustable Window Sizes for Mobile Robots
For autonomous mobile robots to work safely in human-coexistent environments, human-velocity estimation is essential. However, the human body periodically fluctuates to the front, rear, right, and left while walking. Also, a significant estimation error occurs due to the vibration of sensors install...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.103260-103270 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 103270 |
---|---|
container_issue | |
container_start_page | 103260 |
container_title | IEEE access |
container_volume | 12 |
creator | Kamezaki, Mitsuhiro Hirayama, Michiaki Kono, Ryosuke Tsuburaya, Yusuke Sugano, Shigeki |
description | For autonomous mobile robots to work safely in human-coexistent environments, human-velocity estimation is essential. However, the human body periodically fluctuates to the front, rear, right, and left while walking. Also, a significant estimation error occurs due to the vibration of sensors installed in the robot. Quick trajectory adjustment requires high-accuracy and low-latency estimation, but these are in a trade-off relationship. We thus propose a human velocity estimation system (VES) using the Kalman filter (KF) and least squares (LS) with adjustable window size (AWS) to control the accuracy and latency. The VES adjusts two window sizes to calculate a system noise distribution for KF and a velocity vector for LS using a newly proposed cost function, including accuracy (direction and magnitude) and latency (time delay) costs. To select window sizes suitable for walking trajectories and individual gaits, we collected human walking data, calculated the three costs, and selected the window sizes with the minimum cost. The results of experiments using a laser range finder installed on a mobile robot indicate that the cost function could reveal window sizes to increase accuracy or reduce latency depending on walking trajectories and individual gaits, and the VES with AWS could enhance the performance of estimating human walking velocity for mobile robots. |
doi_str_mv | 10.1109/ACCESS.2024.3432590 |
format | Article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3432590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10606482</ieee_id><doaj_id>oai_doaj_org_article_856d078a0f0a48a7a382c1d1fe13fc98</doaj_id><sourcerecordid>oai_doaj_org_article_856d078a0f0a48a7a382c1d1fe13fc98</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-b0fb3f7379ea783e08a488bba89b62bf31fad5765bfe0a3ddaa645beee7fc3333</originalsourceid><addsrcrecordid>eNpNUdFOwyAUbYwmmukX6AM_0AmlpfRxWaZbnDFxTh_JpcBkqUWBxcyvl1ljPC-Xe-Cce8nJskuCx4Tg5noync5Wq3GBi3JMS1pUDT7KzgrCmpxWlB3_O59mFyFscQJPVFWfZf189wY9etada23co1mI9g2idT1aB9tv0B10hwc3tovaI-gVWmoIEa0-duB1QC82vqKJ2u5CBNnp1PfKfaKV_UqXxnl076RN_KOTLobz7MRAF_TFbx1l65vZ03SeLx9uF9PJMm8LRmIusZHU1LRuNNScasyh5FxK4I1khTSUGFBVzSppNAaqFAArK6m1rk1LE0bZYvBVDrbi3ac_-b1wYMUP4fxGgI-27bTgFVO45oANTkOgBsqLlihiNKGmbXjyooNX610IXps_P4LFIQExJCAOCYjfBJLqalDZtNU_BcOs5AX9Bml2hC4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Human Velocity Estimation Using Kalman Filter and Least Squares With Adjustable Window Sizes for Mobile Robots</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kamezaki, Mitsuhiro ; Hirayama, Michiaki ; Kono, Ryosuke ; Tsuburaya, Yusuke ; Sugano, Shigeki</creator><creatorcontrib>Kamezaki, Mitsuhiro ; Hirayama, Michiaki ; Kono, Ryosuke ; Tsuburaya, Yusuke ; Sugano, Shigeki</creatorcontrib><description>For autonomous mobile robots to work safely in human-coexistent environments, human-velocity estimation is essential. However, the human body periodically fluctuates to the front, rear, right, and left while walking. Also, a significant estimation error occurs due to the vibration of sensors installed in the robot. Quick trajectory adjustment requires high-accuracy and low-latency estimation, but these are in a trade-off relationship. We thus propose a human velocity estimation system (VES) using the Kalman filter (KF) and least squares (LS) with adjustable window size (AWS) to control the accuracy and latency. The VES adjusts two window sizes to calculate a system noise distribution for KF and a velocity vector for LS using a newly proposed cost function, including accuracy (direction and magnitude) and latency (time delay) costs. To select window sizes suitable for walking trajectories and individual gaits, we collected human walking data, calculated the three costs, and selected the window sizes with the minimum cost. The results of experiments using a laser range finder installed on a mobile robot indicate that the cost function could reveal window sizes to increase accuracy or reduce latency depending on walking trajectories and individual gaits, and the VES with AWS could enhance the performance of estimating human walking velocity for mobile robots.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3432590</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; adjustable window size ; Autonomous mobile robot ; Autonomous robots ; Estimation ; human-walking velocity estimation ; Kalman filter ; Kalman filters ; least squares ; Legged locomotion ; Mobile robots ; Robot kinematics ; Trajectory ; Velocity measurement</subject><ispartof>IEEE access, 2024, Vol.12, p.103260-103270</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-b0fb3f7379ea783e08a488bba89b62bf31fad5765bfe0a3ddaa645beee7fc3333</cites><orcidid>0000-0002-8556-8185 ; 0000-0002-9331-2446 ; 0000-0002-4377-8993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10606482$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Kamezaki, Mitsuhiro</creatorcontrib><creatorcontrib>Hirayama, Michiaki</creatorcontrib><creatorcontrib>Kono, Ryosuke</creatorcontrib><creatorcontrib>Tsuburaya, Yusuke</creatorcontrib><creatorcontrib>Sugano, Shigeki</creatorcontrib><title>Human Velocity Estimation Using Kalman Filter and Least Squares With Adjustable Window Sizes for Mobile Robots</title><title>IEEE access</title><addtitle>Access</addtitle><description>For autonomous mobile robots to work safely in human-coexistent environments, human-velocity estimation is essential. However, the human body periodically fluctuates to the front, rear, right, and left while walking. Also, a significant estimation error occurs due to the vibration of sensors installed in the robot. Quick trajectory adjustment requires high-accuracy and low-latency estimation, but these are in a trade-off relationship. We thus propose a human velocity estimation system (VES) using the Kalman filter (KF) and least squares (LS) with adjustable window size (AWS) to control the accuracy and latency. The VES adjusts two window sizes to calculate a system noise distribution for KF and a velocity vector for LS using a newly proposed cost function, including accuracy (direction and magnitude) and latency (time delay) costs. To select window sizes suitable for walking trajectories and individual gaits, we collected human walking data, calculated the three costs, and selected the window sizes with the minimum cost. The results of experiments using a laser range finder installed on a mobile robot indicate that the cost function could reveal window sizes to increase accuracy or reduce latency depending on walking trajectories and individual gaits, and the VES with AWS could enhance the performance of estimating human walking velocity for mobile robots.</description><subject>Accuracy</subject><subject>adjustable window size</subject><subject>Autonomous mobile robot</subject><subject>Autonomous robots</subject><subject>Estimation</subject><subject>human-walking velocity estimation</subject><subject>Kalman filter</subject><subject>Kalman filters</subject><subject>least squares</subject><subject>Legged locomotion</subject><subject>Mobile robots</subject><subject>Robot kinematics</subject><subject>Trajectory</subject><subject>Velocity measurement</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdFOwyAUbYwmmukX6AM_0AmlpfRxWaZbnDFxTh_JpcBkqUWBxcyvl1ljPC-Xe-Cce8nJskuCx4Tg5noync5Wq3GBi3JMS1pUDT7KzgrCmpxWlB3_O59mFyFscQJPVFWfZf189wY9etada23co1mI9g2idT1aB9tv0B10hwc3tovaI-gVWmoIEa0-duB1QC82vqKJ2u5CBNnp1PfKfaKV_UqXxnl076RN_KOTLobz7MRAF_TFbx1l65vZ03SeLx9uF9PJMm8LRmIusZHU1LRuNNScasyh5FxK4I1khTSUGFBVzSppNAaqFAArK6m1rk1LE0bZYvBVDrbi3ac_-b1wYMUP4fxGgI-27bTgFVO45oANTkOgBsqLlihiNKGmbXjyooNX610IXps_P4LFIQExJCAOCYjfBJLqalDZtNU_BcOs5AX9Bml2hC4</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Kamezaki, Mitsuhiro</creator><creator>Hirayama, Michiaki</creator><creator>Kono, Ryosuke</creator><creator>Tsuburaya, Yusuke</creator><creator>Sugano, Shigeki</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8556-8185</orcidid><orcidid>https://orcid.org/0000-0002-9331-2446</orcidid><orcidid>https://orcid.org/0000-0002-4377-8993</orcidid></search><sort><creationdate>2024</creationdate><title>Human Velocity Estimation Using Kalman Filter and Least Squares With Adjustable Window Sizes for Mobile Robots</title><author>Kamezaki, Mitsuhiro ; Hirayama, Michiaki ; Kono, Ryosuke ; Tsuburaya, Yusuke ; Sugano, Shigeki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-b0fb3f7379ea783e08a488bba89b62bf31fad5765bfe0a3ddaa645beee7fc3333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>adjustable window size</topic><topic>Autonomous mobile robot</topic><topic>Autonomous robots</topic><topic>Estimation</topic><topic>human-walking velocity estimation</topic><topic>Kalman filter</topic><topic>Kalman filters</topic><topic>least squares</topic><topic>Legged locomotion</topic><topic>Mobile robots</topic><topic>Robot kinematics</topic><topic>Trajectory</topic><topic>Velocity measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamezaki, Mitsuhiro</creatorcontrib><creatorcontrib>Hirayama, Michiaki</creatorcontrib><creatorcontrib>Kono, Ryosuke</creatorcontrib><creatorcontrib>Tsuburaya, Yusuke</creatorcontrib><creatorcontrib>Sugano, Shigeki</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamezaki, Mitsuhiro</au><au>Hirayama, Michiaki</au><au>Kono, Ryosuke</au><au>Tsuburaya, Yusuke</au><au>Sugano, Shigeki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human Velocity Estimation Using Kalman Filter and Least Squares With Adjustable Window Sizes for Mobile Robots</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>103260</spage><epage>103270</epage><pages>103260-103270</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>For autonomous mobile robots to work safely in human-coexistent environments, human-velocity estimation is essential. However, the human body periodically fluctuates to the front, rear, right, and left while walking. Also, a significant estimation error occurs due to the vibration of sensors installed in the robot. Quick trajectory adjustment requires high-accuracy and low-latency estimation, but these are in a trade-off relationship. We thus propose a human velocity estimation system (VES) using the Kalman filter (KF) and least squares (LS) with adjustable window size (AWS) to control the accuracy and latency. The VES adjusts two window sizes to calculate a system noise distribution for KF and a velocity vector for LS using a newly proposed cost function, including accuracy (direction and magnitude) and latency (time delay) costs. To select window sizes suitable for walking trajectories and individual gaits, we collected human walking data, calculated the three costs, and selected the window sizes with the minimum cost. The results of experiments using a laser range finder installed on a mobile robot indicate that the cost function could reveal window sizes to increase accuracy or reduce latency depending on walking trajectories and individual gaits, and the VES with AWS could enhance the performance of estimating human walking velocity for mobile robots.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3432590</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8556-8185</orcidid><orcidid>https://orcid.org/0000-0002-9331-2446</orcidid><orcidid>https://orcid.org/0000-0002-4377-8993</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.103260-103270 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2024_3432590 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy adjustable window size Autonomous mobile robot Autonomous robots Estimation human-walking velocity estimation Kalman filter Kalman filters least squares Legged locomotion Mobile robots Robot kinematics Trajectory Velocity measurement |
title | Human Velocity Estimation Using Kalman Filter and Least Squares With Adjustable Window Sizes for Mobile Robots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A22%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20Velocity%20Estimation%20Using%20Kalman%20Filter%20and%20Least%20Squares%20With%20Adjustable%20Window%20Sizes%20for%20Mobile%20Robots&rft.jtitle=IEEE%20access&rft.au=Kamezaki,%20Mitsuhiro&rft.date=2024&rft.volume=12&rft.spage=103260&rft.epage=103270&rft.pages=103260-103270&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3432590&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_856d078a0f0a48a7a382c1d1fe13fc98%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10606482&rft_doaj_id=oai_doaj_org_article_856d078a0f0a48a7a382c1d1fe13fc98&rfr_iscdi=true |