A Novel Deep Learning Framework With Meta-Heuristic Feature Selection for Enhanced Remote Sensing Image Classification

We propose a novel deep learning architecture, called XcelNet17, for image classification in remote sensing. Comprising fourteen convolutional and three fully connected layers, XcelNet17 outperforms several benchmark architectures available in the literature in terms of classification accuracy. Addi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.91974-91998
Hauptverfasser: Ahmed, Bilal, Akram, Tallha, Rameez Naqvi, Syed, Alsuhaibani, Anas, Altherwy, Youssef N., Masud, Usman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 91998
container_issue
container_start_page 91974
container_title IEEE access
container_volume 12
creator Ahmed, Bilal
Akram, Tallha
Rameez Naqvi, Syed
Alsuhaibani, Anas
Altherwy, Youssef N.
Masud, Usman
description We propose a novel deep learning architecture, called XcelNet17, for image classification in remote sensing. Comprising fourteen convolutional and three fully connected layers, XcelNet17 outperforms several benchmark architectures available in the literature in terms of classification accuracy. Additionally, we present BA-ABC, a new hybrid feature selection algorithm that inherits the strengths of the Bat Algorithm (BA) and the Artificial Bee Colony (ABC) algorithm. Together these contributions significantly enhance the performance and accuracy of remote sensing image classification tasks. The proposed framework is thoroughly trained and verified using five benchmark datasets typically used for remote sensing image classification, namely AID, RSSCN7, SIRI-WHU, UC Merced, and WHU RS-19. Our simulation results suggest that in terms of classification accuracy, XcelNet17 outperforms most of the well established networks including AlexNet, VGG16, VGG19, ResNet50, and DarkNet19 by obtaining accuracy values in the range of 94.6% and 99.9%. Furthermore, the proposed features selection method, when integrated with XcelNet17, yields much improved classification accuracy in comparison to various benchmarks including WOA, GWO, BA, ABC, and ACO algorithms. For example, an 8% superior performance on WHU-RS19 dataset has been observed. The attained results are further validated by an in-depth statistical analysis.
doi_str_mv 10.1109/ACCESS.2024.3422368
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3422368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10583878</ieee_id><doaj_id>oai_doaj_org_article_f77118c58d994b04b2e0440545ff050f</doaj_id><sourcerecordid>3078086760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-36ad1ab2eeb8b3bfe1fd125ba3f22ea47eebe70635643d433a7d9ed03dc88b353</originalsourceid><addsrcrecordid>eNpNkU1v2zAMho1hA1q0_QXrQcDOzvRpycfAS9oA6Qo0G3YUZItKlTlWJjkd9u8nz8VQXSiQfF6SeIviI8ELQnD9edk0q91uQTHlC8YpZZV6V1xSUtUlE6x6_-Z_UdykdMD5qZwS8rJ4WaKv4QV69AXghLZg4uCHPVpHc4TfIf5EP_z4jB5gNOU9nKNPo-_QGsx4joB20EM3-jAgFyJaDc9m6MCiJziGcaoOadLaHM0eUNOblLzznZmA6-KDM32Cm9d4VXxfr7419-X28W7TLLdlR1U9lqwylpiWArSqZa0D4iyhojXMUQqGy1wAiSsmKs4sZ8xIW4PFzHYqA4JdFZtZ1wZz0Kfojyb-0cF4_S8R4l6bmE_qQTspCVGdULaueYt5noo5x4IL57DALmt9mrVOMfw6Qxr1IZzjkNfXDEuFVSUrnLvY3NXFkFIE938qwXryS89-6ckv_epXpm5nygPAG0IopqRifwGI-ZHj</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078086760</pqid></control><display><type>article</type><title>A Novel Deep Learning Framework With Meta-Heuristic Feature Selection for Enhanced Remote Sensing Image Classification</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Ahmed, Bilal ; Akram, Tallha ; Rameez Naqvi, Syed ; Alsuhaibani, Anas ; Altherwy, Youssef N. ; Masud, Usman</creator><creatorcontrib>Ahmed, Bilal ; Akram, Tallha ; Rameez Naqvi, Syed ; Alsuhaibani, Anas ; Altherwy, Youssef N. ; Masud, Usman</creatorcontrib><description>We propose a novel deep learning architecture, called XcelNet17, for image classification in remote sensing. Comprising fourteen convolutional and three fully connected layers, XcelNet17 outperforms several benchmark architectures available in the literature in terms of classification accuracy. Additionally, we present BA-ABC, a new hybrid feature selection algorithm that inherits the strengths of the Bat Algorithm (BA) and the Artificial Bee Colony (ABC) algorithm. Together these contributions significantly enhance the performance and accuracy of remote sensing image classification tasks. The proposed framework is thoroughly trained and verified using five benchmark datasets typically used for remote sensing image classification, namely AID, RSSCN7, SIRI-WHU, UC Merced, and WHU RS-19. Our simulation results suggest that in terms of classification accuracy, XcelNet17 outperforms most of the well established networks including AlexNet, VGG16, VGG19, ResNet50, and DarkNet19 by obtaining accuracy values in the range of 94.6% and 99.9%. Furthermore, the proposed features selection method, when integrated with XcelNet17, yields much improved classification accuracy in comparison to various benchmarks including WOA, GWO, BA, ABC, and ACO algorithms. For example, an 8% superior performance on WHU-RS19 dataset has been observed. The attained results are further validated by an in-depth statistical analysis.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3422368</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Artificial bee colony ; bat algorithm ; Bees algorithm ; Benchmark testing ; Benchmarks ; bio-inspired feature selection ; Classification ; Classification algorithms ; CNN architecture ; Convolutional neural networks ; Datasets ; Deep learning ; Feature extraction ; Feature selection ; Heuristic methods ; Image classification ; Image enhancement ; Machine learning ; Remote sensing ; Statistical analysis ; Swarm intelligence</subject><ispartof>IEEE access, 2024, Vol.12, p.91974-91998</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0001-5184-6810 ; 0000-0001-6954-926X ; 0000-0003-4578-3849 ; 0000-0002-9510-6638 ; 0000-0003-1067-4415 ; 0009-0006-4037-7445</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10583878$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Ahmed, Bilal</creatorcontrib><creatorcontrib>Akram, Tallha</creatorcontrib><creatorcontrib>Rameez Naqvi, Syed</creatorcontrib><creatorcontrib>Alsuhaibani, Anas</creatorcontrib><creatorcontrib>Altherwy, Youssef N.</creatorcontrib><creatorcontrib>Masud, Usman</creatorcontrib><title>A Novel Deep Learning Framework With Meta-Heuristic Feature Selection for Enhanced Remote Sensing Image Classification</title><title>IEEE access</title><addtitle>Access</addtitle><description>We propose a novel deep learning architecture, called XcelNet17, for image classification in remote sensing. Comprising fourteen convolutional and three fully connected layers, XcelNet17 outperforms several benchmark architectures available in the literature in terms of classification accuracy. Additionally, we present BA-ABC, a new hybrid feature selection algorithm that inherits the strengths of the Bat Algorithm (BA) and the Artificial Bee Colony (ABC) algorithm. Together these contributions significantly enhance the performance and accuracy of remote sensing image classification tasks. The proposed framework is thoroughly trained and verified using five benchmark datasets typically used for remote sensing image classification, namely AID, RSSCN7, SIRI-WHU, UC Merced, and WHU RS-19. Our simulation results suggest that in terms of classification accuracy, XcelNet17 outperforms most of the well established networks including AlexNet, VGG16, VGG19, ResNet50, and DarkNet19 by obtaining accuracy values in the range of 94.6% and 99.9%. Furthermore, the proposed features selection method, when integrated with XcelNet17, yields much improved classification accuracy in comparison to various benchmarks including WOA, GWO, BA, ABC, and ACO algorithms. For example, an 8% superior performance on WHU-RS19 dataset has been observed. The attained results are further validated by an in-depth statistical analysis.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial bee colony</subject><subject>bat algorithm</subject><subject>Bees algorithm</subject><subject>Benchmark testing</subject><subject>Benchmarks</subject><subject>bio-inspired feature selection</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>CNN architecture</subject><subject>Convolutional neural networks</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Feature selection</subject><subject>Heuristic methods</subject><subject>Image classification</subject><subject>Image enhancement</subject><subject>Machine learning</subject><subject>Remote sensing</subject><subject>Statistical analysis</subject><subject>Swarm intelligence</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1v2zAMho1hA1q0_QXrQcDOzvRpycfAS9oA6Qo0G3YUZItKlTlWJjkd9u8nz8VQXSiQfF6SeIviI8ELQnD9edk0q91uQTHlC8YpZZV6V1xSUtUlE6x6_-Z_UdykdMD5qZwS8rJ4WaKv4QV69AXghLZg4uCHPVpHc4TfIf5EP_z4jB5gNOU9nKNPo-_QGsx4joB20EM3-jAgFyJaDc9m6MCiJziGcaoOadLaHM0eUNOblLzznZmA6-KDM32Cm9d4VXxfr7419-X28W7TLLdlR1U9lqwylpiWArSqZa0D4iyhojXMUQqGy1wAiSsmKs4sZ8xIW4PFzHYqA4JdFZtZ1wZz0Kfojyb-0cF4_S8R4l6bmE_qQTspCVGdULaueYt5noo5x4IL57DALmt9mrVOMfw6Qxr1IZzjkNfXDEuFVSUrnLvY3NXFkFIE938qwXryS89-6ckv_epXpm5nygPAG0IopqRifwGI-ZHj</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ahmed, Bilal</creator><creator>Akram, Tallha</creator><creator>Rameez Naqvi, Syed</creator><creator>Alsuhaibani, Anas</creator><creator>Altherwy, Youssef N.</creator><creator>Masud, Usman</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0001-5184-6810</orcidid><orcidid>https://orcid.org/0000-0001-6954-926X</orcidid><orcidid>https://orcid.org/0000-0003-4578-3849</orcidid><orcidid>https://orcid.org/0000-0002-9510-6638</orcidid><orcidid>https://orcid.org/0000-0003-1067-4415</orcidid><orcidid>https://orcid.org/0009-0006-4037-7445</orcidid></search><sort><creationdate>2024</creationdate><title>A Novel Deep Learning Framework With Meta-Heuristic Feature Selection for Enhanced Remote Sensing Image Classification</title><author>Ahmed, Bilal ; Akram, Tallha ; Rameez Naqvi, Syed ; Alsuhaibani, Anas ; Altherwy, Youssef N. ; Masud, Usman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-36ad1ab2eeb8b3bfe1fd125ba3f22ea47eebe70635643d433a7d9ed03dc88b353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial bee colony</topic><topic>bat algorithm</topic><topic>Bees algorithm</topic><topic>Benchmark testing</topic><topic>Benchmarks</topic><topic>bio-inspired feature selection</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>CNN architecture</topic><topic>Convolutional neural networks</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Feature selection</topic><topic>Heuristic methods</topic><topic>Image classification</topic><topic>Image enhancement</topic><topic>Machine learning</topic><topic>Remote sensing</topic><topic>Statistical analysis</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Bilal</creatorcontrib><creatorcontrib>Akram, Tallha</creatorcontrib><creatorcontrib>Rameez Naqvi, Syed</creatorcontrib><creatorcontrib>Alsuhaibani, Anas</creatorcontrib><creatorcontrib>Altherwy, Youssef N.</creatorcontrib><creatorcontrib>Masud, Usman</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Bilal</au><au>Akram, Tallha</au><au>Rameez Naqvi, Syed</au><au>Alsuhaibani, Anas</au><au>Altherwy, Youssef N.</au><au>Masud, Usman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Deep Learning Framework With Meta-Heuristic Feature Selection for Enhanced Remote Sensing Image Classification</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>91974</spage><epage>91998</epage><pages>91974-91998</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>We propose a novel deep learning architecture, called XcelNet17, for image classification in remote sensing. Comprising fourteen convolutional and three fully connected layers, XcelNet17 outperforms several benchmark architectures available in the literature in terms of classification accuracy. Additionally, we present BA-ABC, a new hybrid feature selection algorithm that inherits the strengths of the Bat Algorithm (BA) and the Artificial Bee Colony (ABC) algorithm. Together these contributions significantly enhance the performance and accuracy of remote sensing image classification tasks. The proposed framework is thoroughly trained and verified using five benchmark datasets typically used for remote sensing image classification, namely AID, RSSCN7, SIRI-WHU, UC Merced, and WHU RS-19. Our simulation results suggest that in terms of classification accuracy, XcelNet17 outperforms most of the well established networks including AlexNet, VGG16, VGG19, ResNet50, and DarkNet19 by obtaining accuracy values in the range of 94.6% and 99.9%. Furthermore, the proposed features selection method, when integrated with XcelNet17, yields much improved classification accuracy in comparison to various benchmarks including WOA, GWO, BA, ABC, and ACO algorithms. For example, an 8% superior performance on WHU-RS19 dataset has been observed. The attained results are further validated by an in-depth statistical analysis.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3422368</doi><tpages>25</tpages><orcidid>https://orcid.org/0009-0001-5184-6810</orcidid><orcidid>https://orcid.org/0000-0001-6954-926X</orcidid><orcidid>https://orcid.org/0000-0003-4578-3849</orcidid><orcidid>https://orcid.org/0000-0002-9510-6638</orcidid><orcidid>https://orcid.org/0000-0003-1067-4415</orcidid><orcidid>https://orcid.org/0009-0006-4037-7445</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.91974-91998
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3422368
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals
subjects Accuracy
Algorithms
Artificial bee colony
bat algorithm
Bees algorithm
Benchmark testing
Benchmarks
bio-inspired feature selection
Classification
Classification algorithms
CNN architecture
Convolutional neural networks
Datasets
Deep learning
Feature extraction
Feature selection
Heuristic methods
Image classification
Image enhancement
Machine learning
Remote sensing
Statistical analysis
Swarm intelligence
title A Novel Deep Learning Framework With Meta-Heuristic Feature Selection for Enhanced Remote Sensing Image Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A21%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Deep%20Learning%20Framework%20With%20Meta-Heuristic%20Feature%20Selection%20for%20Enhanced%20Remote%20Sensing%20Image%20Classification&rft.jtitle=IEEE%20access&rft.au=Ahmed,%20Bilal&rft.date=2024&rft.volume=12&rft.spage=91974&rft.epage=91998&rft.pages=91974-91998&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3422368&rft_dat=%3Cproquest_cross%3E3078086760%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3078086760&rft_id=info:pmid/&rft_ieee_id=10583878&rft_doaj_id=oai_doaj_org_article_f77118c58d994b04b2e0440545ff050f&rfr_iscdi=true