Characterization of Magnetic Labyrinthine Structures Through Junctions and Terminals Detection Using Template Matching and CNN

Defects influence diverse properties of materials, shaping their structural, mechanical, and electronic characteristics. Among a variety of materials exhibiting unique defects, magnets exhibit diverse nano- to micro-scale defects and have been intensively studied in materials science. Specifically,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.92419-92430
Hauptverfasser: Okubo, Vinicius Yu, Shimizu, Kotaro, Shivaram, B. S., Yong Kim, Hae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 92430
container_issue
container_start_page 92419
container_title IEEE access
container_volume 12
creator Okubo, Vinicius Yu
Shimizu, Kotaro
Shivaram, B. S.
Yong Kim, Hae
description Defects influence diverse properties of materials, shaping their structural, mechanical, and electronic characteristics. Among a variety of materials exhibiting unique defects, magnets exhibit diverse nano- to micro-scale defects and have been intensively studied in materials science. Specifically, defects in magnetic labyrinthine patterns, called junctions and terminals are ubiquitous and serve as points of interest. While detecting and characterizing such defects is crucial for understanding magnets, systematically investigating large-scale images containing over a thousand closely packed junctions and terminals remains a formidable challenge. This study introduces a new technique called TM-CNN (Template Matching - Convolutional Neural Network) designed to detect a multitude of small objects in images, such as the defects in magnetic labyrinthine patterns. TM-CNN was used to identify 641,649 such structures in 444 experimental images, and the results were explored to deepen understanding of magnetic materials. It employs a two-stage detection approach combining template matching, used in initial detection, with a convolutional neural network, used to eliminate incorrect identifications. To train a CNN classifier, it is necessary to annotate a large number of training images. This difficulty prevents the use of CNN in many practical applications. TM-CNN significantly reduces the manual workload for creating training images by automatically making most of the annotations and leaving only a small number of corrections to human reviewers. In testing, TM-CNN achieved an impressive F1 score of 0.991, far outperforming traditional template matching and CNN-based object detection algorithms.
doi_str_mv 10.1109/ACCESS.2024.3422259
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3422259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10583853</ieee_id><doaj_id>oai_doaj_org_article_1dfddb498b524cd5af89d82f10a518c0</doaj_id><sourcerecordid>3078087187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-4851d4f4f8a60270c638b68cf5ece9209c93e95b7b542f4457fd541d7effb37f3</originalsourceid><addsrcrecordid>eNpNkb1u2zAUhYWiBRqkeYJ2INDZLn9FcgzUtE3hJIOdmaDIS4uGLboUNSRDn71SFBThQuLc8x3i4lTVZ4LXhGD97bppbrbbNcWUrxmnlAr9rrqgpNYrJlj9_s37Y3U1DAc8HTVJQl5Uf5vOZusK5PhsS0w9SgHd2X0PJTq0se1Tjn3pYg9oW_LoyphhQLsup3Hfod9j72ZoQLb3aAf5FHt7HNB3KPAyQI9D7PfT5HQ-2gJTcnHdrMz-5v7-U_UhTABcvd6X1eOPm13za7V5-HnbXG9WjipdVlwJ4nngQdkaU4ldzVRbKxcEONAUa6cZaNHKVnAaOBcyeMGJlxBCy2Rgl9XtkuuTPZhzjiebn0yy0bwIKe-NzdPGRzDEB-9brlUrKHde2KC0VzQQbAVRDk9ZX5esc05_RhiKOaQxz3sbhqXCShIlJxdbXC6nYcgQ_v9KsJl7M0tvZu7NvPY2UV8WKgLAG0IopgRj_wB7YJX9</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078087187</pqid></control><display><type>article</type><title>Characterization of Magnetic Labyrinthine Structures Through Junctions and Terminals Detection Using Template Matching and CNN</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Okubo, Vinicius Yu ; Shimizu, Kotaro ; Shivaram, B. S. ; Yong Kim, Hae</creator><creatorcontrib>Okubo, Vinicius Yu ; Shimizu, Kotaro ; Shivaram, B. S. ; Yong Kim, Hae</creatorcontrib><description>Defects influence diverse properties of materials, shaping their structural, mechanical, and electronic characteristics. Among a variety of materials exhibiting unique defects, magnets exhibit diverse nano- to micro-scale defects and have been intensively studied in materials science. Specifically, defects in magnetic labyrinthine patterns, called junctions and terminals are ubiquitous and serve as points of interest. While detecting and characterizing such defects is crucial for understanding magnets, systematically investigating large-scale images containing over a thousand closely packed junctions and terminals remains a formidable challenge. This study introduces a new technique called TM-CNN (Template Matching - Convolutional Neural Network) designed to detect a multitude of small objects in images, such as the defects in magnetic labyrinthine patterns. TM-CNN was used to identify 641,649 such structures in 444 experimental images, and the results were explored to deepen understanding of magnetic materials. It employs a two-stage detection approach combining template matching, used in initial detection, with a convolutional neural network, used to eliminate incorrect identifications. To train a CNN classifier, it is necessary to annotate a large number of training images. This difficulty prevents the use of CNN in many practical applications. TM-CNN significantly reduces the manual workload for creating training images by automatically making most of the annotations and leaving only a small number of corrections to human reviewers. In testing, TM-CNN achieved an impressive F1 score of 0.991, far outperforming traditional template matching and CNN-based object detection algorithms.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3422259</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Annotations ; Artificial neural networks ; Computer vision ; Convolutional neural networks ; Deep learning ; Defects ; Feature extraction ; Junctions ; Magnetic domains ; magnetic labyrinthine patterns ; Magnetic materials ; Magnetic properties ; Magnetic resonance imaging ; Magnetic tunneling ; Magnets ; Material properties ; material science ; Materials science ; Materials science and technology ; Mechanical properties ; Neural networks ; object detection ; Object recognition ; Saturation magnetization ; Structural analysis ; Template matching</subject><ispartof>IEEE access, 2024, Vol.12, p.92419-92430</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-4851d4f4f8a60270c638b68cf5ece9209c93e95b7b542f4457fd541d7effb37f3</cites><orcidid>0000-0002-0958-5960 ; 0009-0009-8324-3772 ; 0000-0003-0400-7042</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10583853$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Okubo, Vinicius Yu</creatorcontrib><creatorcontrib>Shimizu, Kotaro</creatorcontrib><creatorcontrib>Shivaram, B. S.</creatorcontrib><creatorcontrib>Yong Kim, Hae</creatorcontrib><title>Characterization of Magnetic Labyrinthine Structures Through Junctions and Terminals Detection Using Template Matching and CNN</title><title>IEEE access</title><addtitle>Access</addtitle><description>Defects influence diverse properties of materials, shaping their structural, mechanical, and electronic characteristics. Among a variety of materials exhibiting unique defects, magnets exhibit diverse nano- to micro-scale defects and have been intensively studied in materials science. Specifically, defects in magnetic labyrinthine patterns, called junctions and terminals are ubiquitous and serve as points of interest. While detecting and characterizing such defects is crucial for understanding magnets, systematically investigating large-scale images containing over a thousand closely packed junctions and terminals remains a formidable challenge. This study introduces a new technique called TM-CNN (Template Matching - Convolutional Neural Network) designed to detect a multitude of small objects in images, such as the defects in magnetic labyrinthine patterns. TM-CNN was used to identify 641,649 such structures in 444 experimental images, and the results were explored to deepen understanding of magnetic materials. It employs a two-stage detection approach combining template matching, used in initial detection, with a convolutional neural network, used to eliminate incorrect identifications. To train a CNN classifier, it is necessary to annotate a large number of training images. This difficulty prevents the use of CNN in many practical applications. TM-CNN significantly reduces the manual workload for creating training images by automatically making most of the annotations and leaving only a small number of corrections to human reviewers. In testing, TM-CNN achieved an impressive F1 score of 0.991, far outperforming traditional template matching and CNN-based object detection algorithms.</description><subject>Algorithms</subject><subject>Annotations</subject><subject>Artificial neural networks</subject><subject>Computer vision</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Defects</subject><subject>Feature extraction</subject><subject>Junctions</subject><subject>Magnetic domains</subject><subject>magnetic labyrinthine patterns</subject><subject>Magnetic materials</subject><subject>Magnetic properties</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic tunneling</subject><subject>Magnets</subject><subject>Material properties</subject><subject>material science</subject><subject>Materials science</subject><subject>Materials science and technology</subject><subject>Mechanical properties</subject><subject>Neural networks</subject><subject>object detection</subject><subject>Object recognition</subject><subject>Saturation magnetization</subject><subject>Structural analysis</subject><subject>Template matching</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkb1u2zAUhYWiBRqkeYJ2INDZLn9FcgzUtE3hJIOdmaDIS4uGLboUNSRDn71SFBThQuLc8x3i4lTVZ4LXhGD97bppbrbbNcWUrxmnlAr9rrqgpNYrJlj9_s37Y3U1DAc8HTVJQl5Uf5vOZusK5PhsS0w9SgHd2X0PJTq0se1Tjn3pYg9oW_LoyphhQLsup3Hfod9j72ZoQLb3aAf5FHt7HNB3KPAyQI9D7PfT5HQ-2gJTcnHdrMz-5v7-U_UhTABcvd6X1eOPm13za7V5-HnbXG9WjipdVlwJ4nngQdkaU4ldzVRbKxcEONAUa6cZaNHKVnAaOBcyeMGJlxBCy2Rgl9XtkuuTPZhzjiebn0yy0bwIKe-NzdPGRzDEB-9brlUrKHde2KC0VzQQbAVRDk9ZX5esc05_RhiKOaQxz3sbhqXCShIlJxdbXC6nYcgQ_v9KsJl7M0tvZu7NvPY2UV8WKgLAG0IopgRj_wB7YJX9</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Okubo, Vinicius Yu</creator><creator>Shimizu, Kotaro</creator><creator>Shivaram, B. S.</creator><creator>Yong Kim, Hae</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0958-5960</orcidid><orcidid>https://orcid.org/0009-0009-8324-3772</orcidid><orcidid>https://orcid.org/0000-0003-0400-7042</orcidid></search><sort><creationdate>2024</creationdate><title>Characterization of Magnetic Labyrinthine Structures Through Junctions and Terminals Detection Using Template Matching and CNN</title><author>Okubo, Vinicius Yu ; Shimizu, Kotaro ; Shivaram, B. S. ; Yong Kim, Hae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-4851d4f4f8a60270c638b68cf5ece9209c93e95b7b542f4457fd541d7effb37f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Annotations</topic><topic>Artificial neural networks</topic><topic>Computer vision</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Defects</topic><topic>Feature extraction</topic><topic>Junctions</topic><topic>Magnetic domains</topic><topic>magnetic labyrinthine patterns</topic><topic>Magnetic materials</topic><topic>Magnetic properties</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic tunneling</topic><topic>Magnets</topic><topic>Material properties</topic><topic>material science</topic><topic>Materials science</topic><topic>Materials science and technology</topic><topic>Mechanical properties</topic><topic>Neural networks</topic><topic>object detection</topic><topic>Object recognition</topic><topic>Saturation magnetization</topic><topic>Structural analysis</topic><topic>Template matching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okubo, Vinicius Yu</creatorcontrib><creatorcontrib>Shimizu, Kotaro</creatorcontrib><creatorcontrib>Shivaram, B. S.</creatorcontrib><creatorcontrib>Yong Kim, Hae</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okubo, Vinicius Yu</au><au>Shimizu, Kotaro</au><au>Shivaram, B. S.</au><au>Yong Kim, Hae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Magnetic Labyrinthine Structures Through Junctions and Terminals Detection Using Template Matching and CNN</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>92419</spage><epage>92430</epage><pages>92419-92430</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Defects influence diverse properties of materials, shaping their structural, mechanical, and electronic characteristics. Among a variety of materials exhibiting unique defects, magnets exhibit diverse nano- to micro-scale defects and have been intensively studied in materials science. Specifically, defects in magnetic labyrinthine patterns, called junctions and terminals are ubiquitous and serve as points of interest. While detecting and characterizing such defects is crucial for understanding magnets, systematically investigating large-scale images containing over a thousand closely packed junctions and terminals remains a formidable challenge. This study introduces a new technique called TM-CNN (Template Matching - Convolutional Neural Network) designed to detect a multitude of small objects in images, such as the defects in magnetic labyrinthine patterns. TM-CNN was used to identify 641,649 such structures in 444 experimental images, and the results were explored to deepen understanding of magnetic materials. It employs a two-stage detection approach combining template matching, used in initial detection, with a convolutional neural network, used to eliminate incorrect identifications. To train a CNN classifier, it is necessary to annotate a large number of training images. This difficulty prevents the use of CNN in many practical applications. TM-CNN significantly reduces the manual workload for creating training images by automatically making most of the annotations and leaving only a small number of corrections to human reviewers. In testing, TM-CNN achieved an impressive F1 score of 0.991, far outperforming traditional template matching and CNN-based object detection algorithms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3422259</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0958-5960</orcidid><orcidid>https://orcid.org/0009-0009-8324-3772</orcidid><orcidid>https://orcid.org/0000-0003-0400-7042</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.92419-92430
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3422259
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Annotations
Artificial neural networks
Computer vision
Convolutional neural networks
Deep learning
Defects
Feature extraction
Junctions
Magnetic domains
magnetic labyrinthine patterns
Magnetic materials
Magnetic properties
Magnetic resonance imaging
Magnetic tunneling
Magnets
Material properties
material science
Materials science
Materials science and technology
Mechanical properties
Neural networks
object detection
Object recognition
Saturation magnetization
Structural analysis
Template matching
title Characterization of Magnetic Labyrinthine Structures Through Junctions and Terminals Detection Using Template Matching and CNN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A36%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Magnetic%20Labyrinthine%20Structures%20Through%20Junctions%20and%20Terminals%20Detection%20Using%20Template%20Matching%20and%20CNN&rft.jtitle=IEEE%20access&rft.au=Okubo,%20Vinicius%20Yu&rft.date=2024&rft.volume=12&rft.spage=92419&rft.epage=92430&rft.pages=92419-92430&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3422259&rft_dat=%3Cproquest_cross%3E3078087187%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3078087187&rft_id=info:pmid/&rft_ieee_id=10583853&rft_doaj_id=oai_doaj_org_article_1dfddb498b524cd5af89d82f10a518c0&rfr_iscdi=true