Smart Summary: A Distributed Medical Recommender System for Patients in the ICU Using Neural Networks

In the medical domain, particularly in intensive care units (ICUs), the immense volume of patient data presents a significant challenge for clinicians, often resulting in the oversight of critical information or excessive time consumption in accessing it. Recommender systems have been introduced to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.83719-83732
Hauptverfasser: Ayad, Ahmad, Tai, Yu-Hsuan, Dartmann, Guido, Schmeink, Anke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 83732
container_issue
container_start_page 83719
container_title IEEE access
container_volume 12
creator Ayad, Ahmad
Tai, Yu-Hsuan
Dartmann, Guido
Schmeink, Anke
description In the medical domain, particularly in intensive care units (ICUs), the immense volume of patient data presents a significant challenge for clinicians, often resulting in the oversight of critical information or excessive time consumption in accessing it. Recommender systems have been introduced to facilitate targeted, data-driven decision-making and ease the burden on healthcare professionals. This paper introduces Smart Summary, a novel distributed medical recommender system aimed at streamlining the analysis of extensive patient data and improving diagnostic accuracy by focusing on essential information. Smart Summary leverages patients' admission reports and past lab values to predict International Classification of Diseases (ICD) codes, extract disease names, and forecast future abnormalities in lab values. Using this information, Smart Summary builds a comprehensive patient profile that covers the patient's case precisely. Additionally, it recommends the most relevant laboratory values for individual patients by analyzing their data through various modules, including lab values abnormality prediction, automatic ICD codes prediction, and disease-named entity recognition. Furthermore, Smart Summary enhances its performance by incorporating doctors' feedback, utilizing this information to refine recommendations for patients with similar profiles within the same cluster. Experimental results demonstrate that Smart Summary effectively learns to recommend relevant lab values for patients, achieving a Precision@10 of 0.92 after training on doctors' feedback. Moreover, Smart Summary employs an efficient distributed machine learning method based on a split learning mechanism to ensure patient data privacy. This mechanism not only guarantees data privacy and security but also reduces communication overhead by 72% and computation overhead by 45.2% compared to the original split learning mechanism. To our knowledge, Smart Summary is the only system that creates comprehensive patient profiles using multiple machine learning models and recommends relevant lab values while ensuring privacy, efficiency, and security across various data sources.
doi_str_mv 10.1109/ACCESS.2024.3414184
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3414184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10556533</ieee_id><doaj_id>oai_doaj_org_article_ca1188acc73b495889d1366bf3b9cf57</doaj_id><sourcerecordid>3069620567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-dc066e61c3723b85e526be08bebe8656f74455d675c2b00ab9134a639765eef3</originalsourceid><addsrcrecordid>eNpNUcFO3DAQjapWAgFfUA6Wet6tHccTu7dVgLISpVUDZ8t2JtTLJqa2o4q_b5YgxFze6Gnemxm9ovjM6Joxqr5umuaybdclLas1r1jFZPWhOC4ZqBUXHD6-64-Ks5R2dC45U6I-LrAdTMyknYYZn7-RDbnwKUdvp4wd-YGdd2ZPfqMLw4Bjh5G0zynjQPoQyS-TPY45ET-S_AfJtrkn98mPD-QWpzjrbjH_C_ExnRaferNPePaKJ8Xd1eVdc726-fl922xuVo4LlVedowAIzPG65FYKFCVYpNKiRQkC-rqqhOigFq60lBqrGK8McFWDQOz5SbFdbLtgdvop-sNPOhivX4gQH_T8rHd71M4wJqVxrua2UkJK1TEOYHtuletFPXt9WbyeYvg7Ycp6F6Y4ztdrTkFBSQUcpvgy5WJIKWL_tpVRfUhHL-noQzr6NZ1Zdb6oPCK-UwgBgnP-HwgTim8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069620567</pqid></control><display><type>article</type><title>Smart Summary: A Distributed Medical Recommender System for Patients in the ICU Using Neural Networks</title><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Ayad, Ahmad ; Tai, Yu-Hsuan ; Dartmann, Guido ; Schmeink, Anke</creator><creatorcontrib>Ayad, Ahmad ; Tai, Yu-Hsuan ; Dartmann, Guido ; Schmeink, Anke</creatorcontrib><description>In the medical domain, particularly in intensive care units (ICUs), the immense volume of patient data presents a significant challenge for clinicians, often resulting in the oversight of critical information or excessive time consumption in accessing it. Recommender systems have been introduced to facilitate targeted, data-driven decision-making and ease the burden on healthcare professionals. This paper introduces Smart Summary, a novel distributed medical recommender system aimed at streamlining the analysis of extensive patient data and improving diagnostic accuracy by focusing on essential information. Smart Summary leverages patients' admission reports and past lab values to predict International Classification of Diseases (ICD) codes, extract disease names, and forecast future abnormalities in lab values. Using this information, Smart Summary builds a comprehensive patient profile that covers the patient's case precisely. Additionally, it recommends the most relevant laboratory values for individual patients by analyzing their data through various modules, including lab values abnormality prediction, automatic ICD codes prediction, and disease-named entity recognition. Furthermore, Smart Summary enhances its performance by incorporating doctors' feedback, utilizing this information to refine recommendations for patients with similar profiles within the same cluster. Experimental results demonstrate that Smart Summary effectively learns to recommend relevant lab values for patients, achieving a Precision@10 of 0.92 after training on doctors' feedback. Moreover, Smart Summary employs an efficient distributed machine learning method based on a split learning mechanism to ensure patient data privacy. This mechanism not only guarantees data privacy and security but also reduces communication overhead by 72% and computation overhead by 45.2% compared to the original split learning mechanism. To our knowledge, Smart Summary is the only system that creates comprehensive patient profiles using multiple machine learning models and recommends relevant lab values while ensuring privacy, efficiency, and security across various data sources.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3414184</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Abnormalities ; Artificial intelligence ; Codes ; Diseases ; Distributed machine learning ; Drugs ; Feedback ; green AI ; Hospitals ; ICU ; Machine learning ; Medical diagnostic imaging ; medical informatics ; Medical services ; Neural networks ; Patients ; Physicians ; Privacy ; Recommender systems ; Security ; split learning</subject><ispartof>IEEE access, 2024, Vol.12, p.83719-83732</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-dc066e61c3723b85e526be08bebe8656f74455d675c2b00ab9134a639765eef3</cites><orcidid>0000-0002-9929-2925 ; 0000-0002-9081-1274</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10556533$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Ayad, Ahmad</creatorcontrib><creatorcontrib>Tai, Yu-Hsuan</creatorcontrib><creatorcontrib>Dartmann, Guido</creatorcontrib><creatorcontrib>Schmeink, Anke</creatorcontrib><title>Smart Summary: A Distributed Medical Recommender System for Patients in the ICU Using Neural Networks</title><title>IEEE access</title><addtitle>Access</addtitle><description>In the medical domain, particularly in intensive care units (ICUs), the immense volume of patient data presents a significant challenge for clinicians, often resulting in the oversight of critical information or excessive time consumption in accessing it. Recommender systems have been introduced to facilitate targeted, data-driven decision-making and ease the burden on healthcare professionals. This paper introduces Smart Summary, a novel distributed medical recommender system aimed at streamlining the analysis of extensive patient data and improving diagnostic accuracy by focusing on essential information. Smart Summary leverages patients' admission reports and past lab values to predict International Classification of Diseases (ICD) codes, extract disease names, and forecast future abnormalities in lab values. Using this information, Smart Summary builds a comprehensive patient profile that covers the patient's case precisely. Additionally, it recommends the most relevant laboratory values for individual patients by analyzing their data through various modules, including lab values abnormality prediction, automatic ICD codes prediction, and disease-named entity recognition. Furthermore, Smart Summary enhances its performance by incorporating doctors' feedback, utilizing this information to refine recommendations for patients with similar profiles within the same cluster. Experimental results demonstrate that Smart Summary effectively learns to recommend relevant lab values for patients, achieving a Precision@10 of 0.92 after training on doctors' feedback. Moreover, Smart Summary employs an efficient distributed machine learning method based on a split learning mechanism to ensure patient data privacy. This mechanism not only guarantees data privacy and security but also reduces communication overhead by 72% and computation overhead by 45.2% compared to the original split learning mechanism. To our knowledge, Smart Summary is the only system that creates comprehensive patient profiles using multiple machine learning models and recommends relevant lab values while ensuring privacy, efficiency, and security across various data sources.</description><subject>Abnormalities</subject><subject>Artificial intelligence</subject><subject>Codes</subject><subject>Diseases</subject><subject>Distributed machine learning</subject><subject>Drugs</subject><subject>Feedback</subject><subject>green AI</subject><subject>Hospitals</subject><subject>ICU</subject><subject>Machine learning</subject><subject>Medical diagnostic imaging</subject><subject>medical informatics</subject><subject>Medical services</subject><subject>Neural networks</subject><subject>Patients</subject><subject>Physicians</subject><subject>Privacy</subject><subject>Recommender systems</subject><subject>Security</subject><subject>split learning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFO3DAQjapWAgFfUA6Wet6tHccTu7dVgLISpVUDZ8t2JtTLJqa2o4q_b5YgxFze6Gnemxm9ovjM6Joxqr5umuaybdclLas1r1jFZPWhOC4ZqBUXHD6-64-Ks5R2dC45U6I-LrAdTMyknYYZn7-RDbnwKUdvp4wd-YGdd2ZPfqMLw4Bjh5G0zynjQPoQyS-TPY45ET-S_AfJtrkn98mPD-QWpzjrbjH_C_ExnRaferNPePaKJ8Xd1eVdc726-fl922xuVo4LlVedowAIzPG65FYKFCVYpNKiRQkC-rqqhOigFq60lBqrGK8McFWDQOz5SbFdbLtgdvop-sNPOhivX4gQH_T8rHd71M4wJqVxrua2UkJK1TEOYHtuletFPXt9WbyeYvg7Ycp6F6Y4ztdrTkFBSQUcpvgy5WJIKWL_tpVRfUhHL-noQzr6NZ1Zdb6oPCK-UwgBgnP-HwgTim8</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ayad, Ahmad</creator><creator>Tai, Yu-Hsuan</creator><creator>Dartmann, Guido</creator><creator>Schmeink, Anke</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9929-2925</orcidid><orcidid>https://orcid.org/0000-0002-9081-1274</orcidid></search><sort><creationdate>2024</creationdate><title>Smart Summary: A Distributed Medical Recommender System for Patients in the ICU Using Neural Networks</title><author>Ayad, Ahmad ; Tai, Yu-Hsuan ; Dartmann, Guido ; Schmeink, Anke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-dc066e61c3723b85e526be08bebe8656f74455d675c2b00ab9134a639765eef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abnormalities</topic><topic>Artificial intelligence</topic><topic>Codes</topic><topic>Diseases</topic><topic>Distributed machine learning</topic><topic>Drugs</topic><topic>Feedback</topic><topic>green AI</topic><topic>Hospitals</topic><topic>ICU</topic><topic>Machine learning</topic><topic>Medical diagnostic imaging</topic><topic>medical informatics</topic><topic>Medical services</topic><topic>Neural networks</topic><topic>Patients</topic><topic>Physicians</topic><topic>Privacy</topic><topic>Recommender systems</topic><topic>Security</topic><topic>split learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayad, Ahmad</creatorcontrib><creatorcontrib>Tai, Yu-Hsuan</creatorcontrib><creatorcontrib>Dartmann, Guido</creatorcontrib><creatorcontrib>Schmeink, Anke</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayad, Ahmad</au><au>Tai, Yu-Hsuan</au><au>Dartmann, Guido</au><au>Schmeink, Anke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smart Summary: A Distributed Medical Recommender System for Patients in the ICU Using Neural Networks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>83719</spage><epage>83732</epage><pages>83719-83732</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In the medical domain, particularly in intensive care units (ICUs), the immense volume of patient data presents a significant challenge for clinicians, often resulting in the oversight of critical information or excessive time consumption in accessing it. Recommender systems have been introduced to facilitate targeted, data-driven decision-making and ease the burden on healthcare professionals. This paper introduces Smart Summary, a novel distributed medical recommender system aimed at streamlining the analysis of extensive patient data and improving diagnostic accuracy by focusing on essential information. Smart Summary leverages patients' admission reports and past lab values to predict International Classification of Diseases (ICD) codes, extract disease names, and forecast future abnormalities in lab values. Using this information, Smart Summary builds a comprehensive patient profile that covers the patient's case precisely. Additionally, it recommends the most relevant laboratory values for individual patients by analyzing their data through various modules, including lab values abnormality prediction, automatic ICD codes prediction, and disease-named entity recognition. Furthermore, Smart Summary enhances its performance by incorporating doctors' feedback, utilizing this information to refine recommendations for patients with similar profiles within the same cluster. Experimental results demonstrate that Smart Summary effectively learns to recommend relevant lab values for patients, achieving a Precision@10 of 0.92 after training on doctors' feedback. Moreover, Smart Summary employs an efficient distributed machine learning method based on a split learning mechanism to ensure patient data privacy. This mechanism not only guarantees data privacy and security but also reduces communication overhead by 72% and computation overhead by 45.2% compared to the original split learning mechanism. To our knowledge, Smart Summary is the only system that creates comprehensive patient profiles using multiple machine learning models and recommends relevant lab values while ensuring privacy, efficiency, and security across various data sources.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3414184</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9929-2925</orcidid><orcidid>https://orcid.org/0000-0002-9081-1274</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.83719-83732
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3414184
source DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library
subjects Abnormalities
Artificial intelligence
Codes
Diseases
Distributed machine learning
Drugs
Feedback
green AI
Hospitals
ICU
Machine learning
Medical diagnostic imaging
medical informatics
Medical services
Neural networks
Patients
Physicians
Privacy
Recommender systems
Security
split learning
title Smart Summary: A Distributed Medical Recommender System for Patients in the ICU Using Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A35%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smart%20Summary:%20A%20Distributed%20Medical%20Recommender%20System%20for%20Patients%20in%20the%20ICU%20Using%20Neural%20Networks&rft.jtitle=IEEE%20access&rft.au=Ayad,%20Ahmad&rft.date=2024&rft.volume=12&rft.spage=83719&rft.epage=83732&rft.pages=83719-83732&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3414184&rft_dat=%3Cproquest_cross%3E3069620567%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069620567&rft_id=info:pmid/&rft_ieee_id=10556533&rft_doaj_id=oai_doaj_org_article_ca1188acc73b495889d1366bf3b9cf57&rfr_iscdi=true