High-Relative-Bandwidth Multiband LNA Distortion Elimination With Neural Network

This article presents an innovative approach that harnesses neural networks (NN) to eliminate non-linear distortion in low-noise amplifier (LNA) within multi-channel direct sampling receivers (MDSR). Current mainstream methods, such as those relying on memory polynomial or Volterra models, face chal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.81398-81409
Hauptverfasser: Li, Zheng Xiang, Lv, Rui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 81409
container_issue
container_start_page 81398
container_title IEEE access
container_volume 12
creator Li, Zheng Xiang
Lv, Rui
description This article presents an innovative approach that harnesses neural networks (NN) to eliminate non-linear distortion in low-noise amplifier (LNA) within multi-channel direct sampling receivers (MDSR). Current mainstream methods, such as those relying on memory polynomial or Volterra models, face challenges in effectively addressing the demand for LNA linearization modeling, particularly in scenarios with high fractional bandwidth and stochastic inputs. The proposed method incorporates two key technologies to support NN. First, using input signals with specific frequency properties to derive ground truth values by isolating distortion components from the LNA output signals in the frequency domain, simplifies the process of acquiring training samples and enhances accuracy. Additionally, by utilizing mathematical characteristics of LNA output signals, such as instantaneous rate of change, magnitude, and non-uniformly sampled memory points, it performs feature engineering to simultaneously reduce the complexity of the NN and enhance its generalization capabilities. Evaluation with the LNA (ZFL-500LN+) demonstrates outstanding performance in suppressing multiple harmonics and inter-modulation components, which approaches the quantization noise floor of the analog-to-digital converter, especially harmonic reduction of up to 46 dB in the worst distorted channel. These results show the potential of this method to enhance the performance of MDSR.
doi_str_mv 10.1109/ACCESS.2024.3411592
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3411592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10552258</ieee_id><doaj_id>oai_doaj_org_article_d146545a4eca4b5f8dad3b7ff8e466df</doaj_id><sourcerecordid>3068175459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-fa9b9c538c38e0afb6de2892e5f040f15acc35f3b3aec9f4fbb6a2a760f9eeb93</originalsourceid><addsrcrecordid>eNpNUUtLAzEQXkRBUX-BHgqet-bdzbHWaoVaxSoew2R3oqlro9mt4r83dYt0LvPgewx8WXZCSZ9Sos-Ho9F4Pu8zwkSfC0qlZjvZAaNK51xytbs172fHTbMgqYp0koOD7H7iX17zB6yh9V-YX8Cy-vZV-9q7XdWtt2ntTWfD3qVv2hBbH5a9ce3f_RL-5mefkDNcRahTa79DfDvK9hzUDR5v-mH2dDV-HE3y6d31zWg4zUsudZs70FaXkhclL5CAs6pCVmiG0hFBHJVQJqDjlgOW2glnrQIGA0WcRrSaH2Y3nW4VYGE-on-H-GMCePN3CPHFQHq4rNFUVCgpJAgsQVjpigoqbgfOFSiUqlzSOuu0PmL4XGHTmkVYxWV633CiCjpI7LUj71BlDE0T0f27UmLWSZguCbNOwmySSKzTjuURcYshJWOy4L9JloYY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068175459</pqid></control><display><type>article</type><title>High-Relative-Bandwidth Multiband LNA Distortion Elimination With Neural Network</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Zheng Xiang ; Lv, Rui</creator><creatorcontrib>Li, Zheng Xiang ; Lv, Rui</creatorcontrib><description>This article presents an innovative approach that harnesses neural networks (NN) to eliminate non-linear distortion in low-noise amplifier (LNA) within multi-channel direct sampling receivers (MDSR). Current mainstream methods, such as those relying on memory polynomial or Volterra models, face challenges in effectively addressing the demand for LNA linearization modeling, particularly in scenarios with high fractional bandwidth and stochastic inputs. The proposed method incorporates two key technologies to support NN. First, using input signals with specific frequency properties to derive ground truth values by isolating distortion components from the LNA output signals in the frequency domain, simplifies the process of acquiring training samples and enhances accuracy. Additionally, by utilizing mathematical characteristics of LNA output signals, such as instantaneous rate of change, magnitude, and non-uniformly sampled memory points, it performs feature engineering to simultaneously reduce the complexity of the NN and enhance its generalization capabilities. Evaluation with the LNA (ZFL-500LN+) demonstrates outstanding performance in suppressing multiple harmonics and inter-modulation components, which approaches the quantization noise floor of the analog-to-digital converter, especially harmonic reduction of up to 46 dB in the worst distorted channel. These results show the potential of this method to enhance the performance of MDSR.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3411592</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analog to digital converters ; Artificial neural networks ; Bandwidth ; Bandwidths ; Calibration ; Distortion ; distortion elimination ; Distortion measurement ; Harmonic analysis ; Harmonic reduction ; Harmonics ; Harnesses ; high fractional bandwidth ; LNA ; multiband receivers ; Neural networks ; non-linear distortion ; Nonlinear systems ; Polynomials ; Receivers</subject><ispartof>IEEE access, 2024, Vol.12, p.81398-81409</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-fa9b9c538c38e0afb6de2892e5f040f15acc35f3b3aec9f4fbb6a2a760f9eeb93</cites><orcidid>0000-0002-2847-8239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10552258$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Li, Zheng Xiang</creatorcontrib><creatorcontrib>Lv, Rui</creatorcontrib><title>High-Relative-Bandwidth Multiband LNA Distortion Elimination With Neural Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>This article presents an innovative approach that harnesses neural networks (NN) to eliminate non-linear distortion in low-noise amplifier (LNA) within multi-channel direct sampling receivers (MDSR). Current mainstream methods, such as those relying on memory polynomial or Volterra models, face challenges in effectively addressing the demand for LNA linearization modeling, particularly in scenarios with high fractional bandwidth and stochastic inputs. The proposed method incorporates two key technologies to support NN. First, using input signals with specific frequency properties to derive ground truth values by isolating distortion components from the LNA output signals in the frequency domain, simplifies the process of acquiring training samples and enhances accuracy. Additionally, by utilizing mathematical characteristics of LNA output signals, such as instantaneous rate of change, magnitude, and non-uniformly sampled memory points, it performs feature engineering to simultaneously reduce the complexity of the NN and enhance its generalization capabilities. Evaluation with the LNA (ZFL-500LN+) demonstrates outstanding performance in suppressing multiple harmonics and inter-modulation components, which approaches the quantization noise floor of the analog-to-digital converter, especially harmonic reduction of up to 46 dB in the worst distorted channel. These results show the potential of this method to enhance the performance of MDSR.</description><subject>Analog to digital converters</subject><subject>Artificial neural networks</subject><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Calibration</subject><subject>Distortion</subject><subject>distortion elimination</subject><subject>Distortion measurement</subject><subject>Harmonic analysis</subject><subject>Harmonic reduction</subject><subject>Harmonics</subject><subject>Harnesses</subject><subject>high fractional bandwidth</subject><subject>LNA</subject><subject>multiband receivers</subject><subject>Neural networks</subject><subject>non-linear distortion</subject><subject>Nonlinear systems</subject><subject>Polynomials</subject><subject>Receivers</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtLAzEQXkRBUX-BHgqet-bdzbHWaoVaxSoew2R3oqlro9mt4r83dYt0LvPgewx8WXZCSZ9Sos-Ho9F4Pu8zwkSfC0qlZjvZAaNK51xytbs172fHTbMgqYp0koOD7H7iX17zB6yh9V-YX8Cy-vZV-9q7XdWtt2ntTWfD3qVv2hBbH5a9ce3f_RL-5mefkDNcRahTa79DfDvK9hzUDR5v-mH2dDV-HE3y6d31zWg4zUsudZs70FaXkhclL5CAs6pCVmiG0hFBHJVQJqDjlgOW2glnrQIGA0WcRrSaH2Y3nW4VYGE-on-H-GMCePN3CPHFQHq4rNFUVCgpJAgsQVjpigoqbgfOFSiUqlzSOuu0PmL4XGHTmkVYxWV633CiCjpI7LUj71BlDE0T0f27UmLWSZguCbNOwmySSKzTjuURcYshJWOy4L9JloYY</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Li, Zheng Xiang</creator><creator>Lv, Rui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2847-8239</orcidid></search><sort><creationdate>2024</creationdate><title>High-Relative-Bandwidth Multiband LNA Distortion Elimination With Neural Network</title><author>Li, Zheng Xiang ; Lv, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-fa9b9c538c38e0afb6de2892e5f040f15acc35f3b3aec9f4fbb6a2a760f9eeb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analog to digital converters</topic><topic>Artificial neural networks</topic><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Calibration</topic><topic>Distortion</topic><topic>distortion elimination</topic><topic>Distortion measurement</topic><topic>Harmonic analysis</topic><topic>Harmonic reduction</topic><topic>Harmonics</topic><topic>Harnesses</topic><topic>high fractional bandwidth</topic><topic>LNA</topic><topic>multiband receivers</topic><topic>Neural networks</topic><topic>non-linear distortion</topic><topic>Nonlinear systems</topic><topic>Polynomials</topic><topic>Receivers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zheng Xiang</creatorcontrib><creatorcontrib>Lv, Rui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zheng Xiang</au><au>Lv, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Relative-Bandwidth Multiband LNA Distortion Elimination With Neural Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>81398</spage><epage>81409</epage><pages>81398-81409</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This article presents an innovative approach that harnesses neural networks (NN) to eliminate non-linear distortion in low-noise amplifier (LNA) within multi-channel direct sampling receivers (MDSR). Current mainstream methods, such as those relying on memory polynomial or Volterra models, face challenges in effectively addressing the demand for LNA linearization modeling, particularly in scenarios with high fractional bandwidth and stochastic inputs. The proposed method incorporates two key technologies to support NN. First, using input signals with specific frequency properties to derive ground truth values by isolating distortion components from the LNA output signals in the frequency domain, simplifies the process of acquiring training samples and enhances accuracy. Additionally, by utilizing mathematical characteristics of LNA output signals, such as instantaneous rate of change, magnitude, and non-uniformly sampled memory points, it performs feature engineering to simultaneously reduce the complexity of the NN and enhance its generalization capabilities. Evaluation with the LNA (ZFL-500LN+) demonstrates outstanding performance in suppressing multiple harmonics and inter-modulation components, which approaches the quantization noise floor of the analog-to-digital converter, especially harmonic reduction of up to 46 dB in the worst distorted channel. These results show the potential of this method to enhance the performance of MDSR.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3411592</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2847-8239</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.81398-81409
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3411592
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Analog to digital converters
Artificial neural networks
Bandwidth
Bandwidths
Calibration
Distortion
distortion elimination
Distortion measurement
Harmonic analysis
Harmonic reduction
Harmonics
Harnesses
high fractional bandwidth
LNA
multiband receivers
Neural networks
non-linear distortion
Nonlinear systems
Polynomials
Receivers
title High-Relative-Bandwidth Multiband LNA Distortion Elimination With Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A48%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Relative-Bandwidth%20Multiband%20LNA%20Distortion%20Elimination%20With%20Neural%20Network&rft.jtitle=IEEE%20access&rft.au=Li,%20Zheng%20Xiang&rft.date=2024&rft.volume=12&rft.spage=81398&rft.epage=81409&rft.pages=81398-81409&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3411592&rft_dat=%3Cproquest_cross%3E3068175459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068175459&rft_id=info:pmid/&rft_ieee_id=10552258&rft_doaj_id=oai_doaj_org_article_d146545a4eca4b5f8dad3b7ff8e466df&rfr_iscdi=true