Operation Optimization of Multiphase Pollutant Treatment Considering Carbon Emissions
Carbon emissions have become a key environmental indicator as air pollution increases. It is urgent for multiobjective optimization of chemical processes to take into account carbon emissions, while ensuring economic benefits. Aiming to improve the treatment of multiphase pollutants, this study buil...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.83925-83939 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 83939 |
---|---|
container_issue | |
container_start_page | 83925 |
container_title | IEEE access |
container_volume | 12 |
creator | Yu, Guo Zhang, Dongjie Deng, Hailong Jiang, Chao Zhang, Quanling |
description | Carbon emissions have become a key environmental indicator as air pollution increases. It is urgent for multiobjective optimization of chemical processes to take into account carbon emissions, while ensuring economic benefits. Aiming to improve the treatment of multiphase pollutants, this study builds a three-objective optimization model by considering the optimization of treatment effect, energy consumption, and an innovatively constructed optimization objective of direct and indirect carbon emissions. We run nondominated sorting genetic algorithm-II (NSGA-II) to optimize the operating parameters with respect to the three objectives to get a set of Pareto nondominated solutions on the established Aspen Plus steady-state process simulation, which is based on physical properties and process mechanisms. Finally, we find the optimal solutions through the technique for order preference by similarity to ideal solution (TOPSIS) and knee point. Under the same experimental conditions, we compare our model with the multiphase pollutant treatment research only considering the waste-water flow and energy consumption. Additionally, a life cycle analysis of the three treatment processes (G1, G2 and G3) was conducted. The experimental results show that the proposed model has achieved good results on the three objectives, which have demonstrated the effectiveness of our model. Overall, this study offers a new perspective to the optimization and decision-making of multiphase pollutant treatment considering carbon emissions. |
doi_str_mv | 10.1109/ACCESS.2024.3410325 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3410325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10550947</ieee_id><doaj_id>oai_doaj_org_article_49494db81a1843429fc35ee9992d79b5</doaj_id><sourcerecordid>3069620623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-4c30a1e11f768b5a82336ca7e1048932f9c55b1a04d635e58fe7506bce46ea53</originalsourceid><addsrcrecordid>eNpNkV1LwzAUhoMoOKa_QC8KXm_mu83lKPMDJhOc1yFtTzWja2qSXeivN7NDllzkPYc87znwInRD8JwQrO4XZbl8e5tTTPmccYIZFWdoQolUMyaYPD_Rl-g6hC1Op0gtkU_Q-3oAb6J1fbYeot3Zn7Fwbfay76IdPk2A7NV13T6aPmYbDybuIKnS9cE24G3_kZXGVwla7mwIiQ5X6KI1XYDr4ztFm4flpnyardaPz-ViNatpoeKM1wwbAoS0uSwqYQrKmKxNDgTzQjHaqlqIihjMG8kEiKKFXGBZ1cAlGMGm6Hm0bZzZ6sHbnfHf2hmr_xrOf2jjo6070Fyl21QFMaTgjFPV1skRlFK0yVV18LobvQbvvvYQot66ve_T9pphqSTFMm03RWz8VXsXgof2fyrB-pCGHtPQhzT0MY1E3Y6UBYATQgiseM5-ARchhbQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069620623</pqid></control><display><type>article</type><title>Operation Optimization of Multiphase Pollutant Treatment Considering Carbon Emissions</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yu, Guo ; Zhang, Dongjie ; Deng, Hailong ; Jiang, Chao ; Zhang, Quanling</creator><creatorcontrib>Yu, Guo ; Zhang, Dongjie ; Deng, Hailong ; Jiang, Chao ; Zhang, Quanling</creatorcontrib><description>Carbon emissions have become a key environmental indicator as air pollution increases. It is urgent for multiobjective optimization of chemical processes to take into account carbon emissions, while ensuring economic benefits. Aiming to improve the treatment of multiphase pollutants, this study builds a three-objective optimization model by considering the optimization of treatment effect, energy consumption, and an innovatively constructed optimization objective of direct and indirect carbon emissions. We run nondominated sorting genetic algorithm-II (NSGA-II) to optimize the operating parameters with respect to the three objectives to get a set of Pareto nondominated solutions on the established Aspen Plus steady-state process simulation, which is based on physical properties and process mechanisms. Finally, we find the optimal solutions through the technique for order preference by similarity to ideal solution (TOPSIS) and knee point. Under the same experimental conditions, we compare our model with the multiphase pollutant treatment research only considering the waste-water flow and energy consumption. Additionally, a life cycle analysis of the three treatment processes (G1, G2 and G3) was conducted. The experimental results show that the proposed model has achieved good results on the three objectives, which have demonstrated the effectiveness of our model. Overall, this study offers a new perspective to the optimization and decision-making of multiphase pollutant treatment considering carbon emissions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3410325</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Carbon ; Carbon dioxide ; Carbon emissions ; Catalysts ; chemical process ; Chemical reactions ; Computer simulation ; Decision making ; Emissions ; Energy consumption ; Environmental monitoring ; Genetic algorithms ; Inductors ; Life cycle analysis ; multiobjective optimization ; Multiphase ; Multiple objective analysis ; Optimization ; Optimization models ; Oxidation ; Pareto optimization ; Physical properties ; pollutant treatment ; Pollutants ; Pollution control ; Sorting algorithms ; Wastewater ; Water flow</subject><ispartof>IEEE access, 2024, Vol.12, p.83925-83939</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-4c30a1e11f768b5a82336ca7e1048932f9c55b1a04d635e58fe7506bce46ea53</cites><orcidid>0009-0003-2177-1824 ; 0009-0008-8610-3735 ; 0009-0008-2559-9028 ; 0000-0003-2427-8202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10550947$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Yu, Guo</creatorcontrib><creatorcontrib>Zhang, Dongjie</creatorcontrib><creatorcontrib>Deng, Hailong</creatorcontrib><creatorcontrib>Jiang, Chao</creatorcontrib><creatorcontrib>Zhang, Quanling</creatorcontrib><title>Operation Optimization of Multiphase Pollutant Treatment Considering Carbon Emissions</title><title>IEEE access</title><addtitle>Access</addtitle><description>Carbon emissions have become a key environmental indicator as air pollution increases. It is urgent for multiobjective optimization of chemical processes to take into account carbon emissions, while ensuring economic benefits. Aiming to improve the treatment of multiphase pollutants, this study builds a three-objective optimization model by considering the optimization of treatment effect, energy consumption, and an innovatively constructed optimization objective of direct and indirect carbon emissions. We run nondominated sorting genetic algorithm-II (NSGA-II) to optimize the operating parameters with respect to the three objectives to get a set of Pareto nondominated solutions on the established Aspen Plus steady-state process simulation, which is based on physical properties and process mechanisms. Finally, we find the optimal solutions through the technique for order preference by similarity to ideal solution (TOPSIS) and knee point. Under the same experimental conditions, we compare our model with the multiphase pollutant treatment research only considering the waste-water flow and energy consumption. Additionally, a life cycle analysis of the three treatment processes (G1, G2 and G3) was conducted. The experimental results show that the proposed model has achieved good results on the three objectives, which have demonstrated the effectiveness of our model. Overall, this study offers a new perspective to the optimization and decision-making of multiphase pollutant treatment considering carbon emissions.</description><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon emissions</subject><subject>Catalysts</subject><subject>chemical process</subject><subject>Chemical reactions</subject><subject>Computer simulation</subject><subject>Decision making</subject><subject>Emissions</subject><subject>Energy consumption</subject><subject>Environmental monitoring</subject><subject>Genetic algorithms</subject><subject>Inductors</subject><subject>Life cycle analysis</subject><subject>multiobjective optimization</subject><subject>Multiphase</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Oxidation</subject><subject>Pareto optimization</subject><subject>Physical properties</subject><subject>pollutant treatment</subject><subject>Pollutants</subject><subject>Pollution control</subject><subject>Sorting algorithms</subject><subject>Wastewater</subject><subject>Water flow</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkV1LwzAUhoMoOKa_QC8KXm_mu83lKPMDJhOc1yFtTzWja2qSXeivN7NDllzkPYc87znwInRD8JwQrO4XZbl8e5tTTPmccYIZFWdoQolUMyaYPD_Rl-g6hC1Op0gtkU_Q-3oAb6J1fbYeot3Zn7Fwbfay76IdPk2A7NV13T6aPmYbDybuIKnS9cE24G3_kZXGVwla7mwIiQ5X6KI1XYDr4ztFm4flpnyardaPz-ViNatpoeKM1wwbAoS0uSwqYQrKmKxNDgTzQjHaqlqIihjMG8kEiKKFXGBZ1cAlGMGm6Hm0bZzZ6sHbnfHf2hmr_xrOf2jjo6070Fyl21QFMaTgjFPV1skRlFK0yVV18LobvQbvvvYQot66ve_T9pphqSTFMm03RWz8VXsXgof2fyrB-pCGHtPQhzT0MY1E3Y6UBYATQgiseM5-ARchhbQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Yu, Guo</creator><creator>Zhang, Dongjie</creator><creator>Deng, Hailong</creator><creator>Jiang, Chao</creator><creator>Zhang, Quanling</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0003-2177-1824</orcidid><orcidid>https://orcid.org/0009-0008-8610-3735</orcidid><orcidid>https://orcid.org/0009-0008-2559-9028</orcidid><orcidid>https://orcid.org/0000-0003-2427-8202</orcidid></search><sort><creationdate>2024</creationdate><title>Operation Optimization of Multiphase Pollutant Treatment Considering Carbon Emissions</title><author>Yu, Guo ; Zhang, Dongjie ; Deng, Hailong ; Jiang, Chao ; Zhang, Quanling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-4c30a1e11f768b5a82336ca7e1048932f9c55b1a04d635e58fe7506bce46ea53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon emissions</topic><topic>Catalysts</topic><topic>chemical process</topic><topic>Chemical reactions</topic><topic>Computer simulation</topic><topic>Decision making</topic><topic>Emissions</topic><topic>Energy consumption</topic><topic>Environmental monitoring</topic><topic>Genetic algorithms</topic><topic>Inductors</topic><topic>Life cycle analysis</topic><topic>multiobjective optimization</topic><topic>Multiphase</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Oxidation</topic><topic>Pareto optimization</topic><topic>Physical properties</topic><topic>pollutant treatment</topic><topic>Pollutants</topic><topic>Pollution control</topic><topic>Sorting algorithms</topic><topic>Wastewater</topic><topic>Water flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Guo</creatorcontrib><creatorcontrib>Zhang, Dongjie</creatorcontrib><creatorcontrib>Deng, Hailong</creatorcontrib><creatorcontrib>Jiang, Chao</creatorcontrib><creatorcontrib>Zhang, Quanling</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Guo</au><au>Zhang, Dongjie</au><au>Deng, Hailong</au><au>Jiang, Chao</au><au>Zhang, Quanling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Operation Optimization of Multiphase Pollutant Treatment Considering Carbon Emissions</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>83925</spage><epage>83939</epage><pages>83925-83939</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Carbon emissions have become a key environmental indicator as air pollution increases. It is urgent for multiobjective optimization of chemical processes to take into account carbon emissions, while ensuring economic benefits. Aiming to improve the treatment of multiphase pollutants, this study builds a three-objective optimization model by considering the optimization of treatment effect, energy consumption, and an innovatively constructed optimization objective of direct and indirect carbon emissions. We run nondominated sorting genetic algorithm-II (NSGA-II) to optimize the operating parameters with respect to the three objectives to get a set of Pareto nondominated solutions on the established Aspen Plus steady-state process simulation, which is based on physical properties and process mechanisms. Finally, we find the optimal solutions through the technique for order preference by similarity to ideal solution (TOPSIS) and knee point. Under the same experimental conditions, we compare our model with the multiphase pollutant treatment research only considering the waste-water flow and energy consumption. Additionally, a life cycle analysis of the three treatment processes (G1, G2 and G3) was conducted. The experimental results show that the proposed model has achieved good results on the three objectives, which have demonstrated the effectiveness of our model. Overall, this study offers a new perspective to the optimization and decision-making of multiphase pollutant treatment considering carbon emissions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3410325</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0003-2177-1824</orcidid><orcidid>https://orcid.org/0009-0008-8610-3735</orcidid><orcidid>https://orcid.org/0009-0008-2559-9028</orcidid><orcidid>https://orcid.org/0000-0003-2427-8202</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.83925-83939 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2024_3410325 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Carbon Carbon dioxide Carbon emissions Catalysts chemical process Chemical reactions Computer simulation Decision making Emissions Energy consumption Environmental monitoring Genetic algorithms Inductors Life cycle analysis multiobjective optimization Multiphase Multiple objective analysis Optimization Optimization models Oxidation Pareto optimization Physical properties pollutant treatment Pollutants Pollution control Sorting algorithms Wastewater Water flow |
title | Operation Optimization of Multiphase Pollutant Treatment Considering Carbon Emissions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A23%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Operation%20Optimization%20of%20Multiphase%20Pollutant%20Treatment%20Considering%20Carbon%20Emissions&rft.jtitle=IEEE%20access&rft.au=Yu,%20Guo&rft.date=2024&rft.volume=12&rft.spage=83925&rft.epage=83939&rft.pages=83925-83939&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3410325&rft_dat=%3Cproquest_cross%3E3069620623%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069620623&rft_id=info:pmid/&rft_ieee_id=10550947&rft_doaj_id=oai_doaj_org_article_49494db81a1843429fc35ee9992d79b5&rfr_iscdi=true |