A Semi-Supervised Approach Combining Image and Frequency Enhancement for Echocardiography Segmentation
Segmentation of internal structures in echocardiography enables quantitative measurements of the cardiac size, shape, and function, thereby facilitating automated diagnosis and treatment planning. Semi-supervised learning alleviates the demand for large amounts of annotations in deep learning. The e...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.92549-92559 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 92559 |
---|---|
container_issue | |
container_start_page | 92549 |
container_title | IEEE access |
container_volume | 12 |
creator | Ding, Jiajun Han, Xiaoxiang |
description | Segmentation of internal structures in echocardiography enables quantitative measurements of the cardiac size, shape, and function, thereby facilitating automated diagnosis and treatment planning. Semi-supervised learning alleviates the demand for large amounts of annotations in deep learning. The existing interpolation-based data augmentation (perturbation) methods demonstrate significant potential, yet they solely focus on operating pixels in the spatial domain, overlooking considerations in the frequency domain. Our proposed interpolation method at the frequency domain level operates on a level where the spatial arrangement of pixels is less relevant. It is capable of generating potent and diverse perturbations while concurrently circumventing disruption to the spatial structure of the image, thereby augmenting the robustness of semi-supervised frameworks. Specifically, we transform annotated and unannotated images into the frequency domain separately. Then, half of the elements in each frequency domain map are randomly selected and mixed with each other. Finally, the resulting mixed frequency domain images are transformed back into the spatial domain to generate mixed images. Furthermore, we refine the spatial domain CutMix method by devising a cutting strategy that adheres to jigsaw partitioning rules, facilitating the model's perception of local cardiac anatomical structures. Extensive experiments on two public echocardiography segmentation datasets demonstrate the effectiveness of the proposed method. |
doi_str_mv | 10.1109/ACCESS.2024.3408952 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3408952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10546964</ieee_id><doaj_id>oai_doaj_org_article_ae466e62bc97425786b179ec6357bd9b</doaj_id><sourcerecordid>3078086997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-2e31c71e36cbb4350707f3e704df23b2593db9769728c1e3ad61f653a1c440273</originalsourceid><addsrcrecordid>eNpNUU1r3DAQNaWFhjS_oDkIcvZW37KOi9k0C4Eetj0LSR57tcSSI3sL---rjUPJXGaYmffm41XVd4I3hGD9Y9u2u8NhQzHlG8ZxowX9VN1QInXNBJOfP8Rfq7t5PuFiTUkJdVP1W3SAMdSH8wT5b5ihQ9tpysn6I2rT6EIMcUD70Q6AbOzQY4bXM0R_Qbt4tNHDCHFBfcpo54_J29yFNGQ7HS-Fd7gW7RJS_FZ96e3LDHfv_rb687j73T7Vz79-7tvtc-1po5eaAiNeEWDSO8eZwAqrnoHCvOspc1Ro1jmtpFa08aXNdpL0UjBLPOeYKnZb7VfeLtmTmXIYbb6YZIN5S6Q8GJuX4F_AWOBSgqTOa8WpUI10RGnwkgnlOu0K18PKVd5Rbp4Xc0rnHMv6hmHV4EZqfZ3I1i6f0zxn6P9PJdhc9TGrPuaqj3nXp6DuV1QAgA8IwaWWnP0D7TSLhQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078086997</pqid></control><display><type>article</type><title>A Semi-Supervised Approach Combining Image and Frequency Enhancement for Echocardiography Segmentation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ding, Jiajun ; Han, Xiaoxiang</creator><creatorcontrib>Ding, Jiajun ; Han, Xiaoxiang</creatorcontrib><description>Segmentation of internal structures in echocardiography enables quantitative measurements of the cardiac size, shape, and function, thereby facilitating automated diagnosis and treatment planning. Semi-supervised learning alleviates the demand for large amounts of annotations in deep learning. The existing interpolation-based data augmentation (perturbation) methods demonstrate significant potential, yet they solely focus on operating pixels in the spatial domain, overlooking considerations in the frequency domain. Our proposed interpolation method at the frequency domain level operates on a level where the spatial arrangement of pixels is less relevant. It is capable of generating potent and diverse perturbations while concurrently circumventing disruption to the spatial structure of the image, thereby augmenting the robustness of semi-supervised frameworks. Specifically, we transform annotated and unannotated images into the frequency domain separately. Then, half of the elements in each frequency domain map are randomly selected and mixed with each other. Finally, the resulting mixed frequency domain images are transformed back into the spatial domain to generate mixed images. Furthermore, we refine the spatial domain CutMix method by devising a cutting strategy that adheres to jigsaw partitioning rules, facilitating the model's perception of local cardiac anatomical structures. Extensive experiments on two public echocardiography segmentation datasets demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3408952</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Annotations ; Data augmentation ; Data models ; Deep learning ; Echocardiography ; frequency domain ; Frequency domain analysis ; Image enhancement ; Image segmentation ; Interpolation ; Perturbation ; Perturbation methods ; Pixels ; semantic segmentation ; Semi-supervised learning ; Semisupervised learning</subject><ispartof>IEEE access, 2024, Vol.12, p.92549-92559</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-2e31c71e36cbb4350707f3e704df23b2593db9769728c1e3ad61f653a1c440273</cites><orcidid>0000-0002-1946-2067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10546964$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Ding, Jiajun</creatorcontrib><creatorcontrib>Han, Xiaoxiang</creatorcontrib><title>A Semi-Supervised Approach Combining Image and Frequency Enhancement for Echocardiography Segmentation</title><title>IEEE access</title><addtitle>Access</addtitle><description>Segmentation of internal structures in echocardiography enables quantitative measurements of the cardiac size, shape, and function, thereby facilitating automated diagnosis and treatment planning. Semi-supervised learning alleviates the demand for large amounts of annotations in deep learning. The existing interpolation-based data augmentation (perturbation) methods demonstrate significant potential, yet they solely focus on operating pixels in the spatial domain, overlooking considerations in the frequency domain. Our proposed interpolation method at the frequency domain level operates on a level where the spatial arrangement of pixels is less relevant. It is capable of generating potent and diverse perturbations while concurrently circumventing disruption to the spatial structure of the image, thereby augmenting the robustness of semi-supervised frameworks. Specifically, we transform annotated and unannotated images into the frequency domain separately. Then, half of the elements in each frequency domain map are randomly selected and mixed with each other. Finally, the resulting mixed frequency domain images are transformed back into the spatial domain to generate mixed images. Furthermore, we refine the spatial domain CutMix method by devising a cutting strategy that adheres to jigsaw partitioning rules, facilitating the model's perception of local cardiac anatomical structures. Extensive experiments on two public echocardiography segmentation datasets demonstrate the effectiveness of the proposed method.</description><subject>Annotations</subject><subject>Data augmentation</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Echocardiography</subject><subject>frequency domain</subject><subject>Frequency domain analysis</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Interpolation</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Pixels</subject><subject>semantic segmentation</subject><subject>Semi-supervised learning</subject><subject>Semisupervised learning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAQNaWFhjS_oDkIcvZW37KOi9k0C4Eetj0LSR57tcSSI3sL---rjUPJXGaYmffm41XVd4I3hGD9Y9u2u8NhQzHlG8ZxowX9VN1QInXNBJOfP8Rfq7t5PuFiTUkJdVP1W3SAMdSH8wT5b5ihQ9tpysn6I2rT6EIMcUD70Q6AbOzQY4bXM0R_Qbt4tNHDCHFBfcpo54_J29yFNGQ7HS-Fd7gW7RJS_FZ96e3LDHfv_rb687j73T7Vz79-7tvtc-1po5eaAiNeEWDSO8eZwAqrnoHCvOspc1Ro1jmtpFa08aXNdpL0UjBLPOeYKnZb7VfeLtmTmXIYbb6YZIN5S6Q8GJuX4F_AWOBSgqTOa8WpUI10RGnwkgnlOu0K18PKVd5Rbp4Xc0rnHMv6hmHV4EZqfZ3I1i6f0zxn6P9PJdhc9TGrPuaqj3nXp6DuV1QAgA8IwaWWnP0D7TSLhQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ding, Jiajun</creator><creator>Han, Xiaoxiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1946-2067</orcidid></search><sort><creationdate>2024</creationdate><title>A Semi-Supervised Approach Combining Image and Frequency Enhancement for Echocardiography Segmentation</title><author>Ding, Jiajun ; Han, Xiaoxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-2e31c71e36cbb4350707f3e704df23b2593db9769728c1e3ad61f653a1c440273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annotations</topic><topic>Data augmentation</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Echocardiography</topic><topic>frequency domain</topic><topic>Frequency domain analysis</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Interpolation</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Pixels</topic><topic>semantic segmentation</topic><topic>Semi-supervised learning</topic><topic>Semisupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Jiajun</creatorcontrib><creatorcontrib>Han, Xiaoxiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Jiajun</au><au>Han, Xiaoxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Semi-Supervised Approach Combining Image and Frequency Enhancement for Echocardiography Segmentation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>92549</spage><epage>92559</epage><pages>92549-92559</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Segmentation of internal structures in echocardiography enables quantitative measurements of the cardiac size, shape, and function, thereby facilitating automated diagnosis and treatment planning. Semi-supervised learning alleviates the demand for large amounts of annotations in deep learning. The existing interpolation-based data augmentation (perturbation) methods demonstrate significant potential, yet they solely focus on operating pixels in the spatial domain, overlooking considerations in the frequency domain. Our proposed interpolation method at the frequency domain level operates on a level where the spatial arrangement of pixels is less relevant. It is capable of generating potent and diverse perturbations while concurrently circumventing disruption to the spatial structure of the image, thereby augmenting the robustness of semi-supervised frameworks. Specifically, we transform annotated and unannotated images into the frequency domain separately. Then, half of the elements in each frequency domain map are randomly selected and mixed with each other. Finally, the resulting mixed frequency domain images are transformed back into the spatial domain to generate mixed images. Furthermore, we refine the spatial domain CutMix method by devising a cutting strategy that adheres to jigsaw partitioning rules, facilitating the model's perception of local cardiac anatomical structures. Extensive experiments on two public echocardiography segmentation datasets demonstrate the effectiveness of the proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3408952</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1946-2067</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.92549-92559 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2024_3408952 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Annotations Data augmentation Data models Deep learning Echocardiography frequency domain Frequency domain analysis Image enhancement Image segmentation Interpolation Perturbation Perturbation methods Pixels semantic segmentation Semi-supervised learning Semisupervised learning |
title | A Semi-Supervised Approach Combining Image and Frequency Enhancement for Echocardiography Segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A49%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Semi-Supervised%20Approach%20Combining%20Image%20and%20Frequency%20Enhancement%20for%20Echocardiography%20Segmentation&rft.jtitle=IEEE%20access&rft.au=Ding,%20Jiajun&rft.date=2024&rft.volume=12&rft.spage=92549&rft.epage=92559&rft.pages=92549-92559&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3408952&rft_dat=%3Cproquest_cross%3E3078086997%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3078086997&rft_id=info:pmid/&rft_ieee_id=10546964&rft_doaj_id=oai_doaj_org_article_ae466e62bc97425786b179ec6357bd9b&rfr_iscdi=true |