A Semi-Supervised Approach Combining Image and Frequency Enhancement for Echocardiography Segmentation

Segmentation of internal structures in echocardiography enables quantitative measurements of the cardiac size, shape, and function, thereby facilitating automated diagnosis and treatment planning. Semi-supervised learning alleviates the demand for large amounts of annotations in deep learning. The e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.92549-92559
Hauptverfasser: Ding, Jiajun, Han, Xiaoxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 92559
container_issue
container_start_page 92549
container_title IEEE access
container_volume 12
creator Ding, Jiajun
Han, Xiaoxiang
description Segmentation of internal structures in echocardiography enables quantitative measurements of the cardiac size, shape, and function, thereby facilitating automated diagnosis and treatment planning. Semi-supervised learning alleviates the demand for large amounts of annotations in deep learning. The existing interpolation-based data augmentation (perturbation) methods demonstrate significant potential, yet they solely focus on operating pixels in the spatial domain, overlooking considerations in the frequency domain. Our proposed interpolation method at the frequency domain level operates on a level where the spatial arrangement of pixels is less relevant. It is capable of generating potent and diverse perturbations while concurrently circumventing disruption to the spatial structure of the image, thereby augmenting the robustness of semi-supervised frameworks. Specifically, we transform annotated and unannotated images into the frequency domain separately. Then, half of the elements in each frequency domain map are randomly selected and mixed with each other. Finally, the resulting mixed frequency domain images are transformed back into the spatial domain to generate mixed images. Furthermore, we refine the spatial domain CutMix method by devising a cutting strategy that adheres to jigsaw partitioning rules, facilitating the model's perception of local cardiac anatomical structures. Extensive experiments on two public echocardiography segmentation datasets demonstrate the effectiveness of the proposed method.
doi_str_mv 10.1109/ACCESS.2024.3408952
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3408952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10546964</ieee_id><doaj_id>oai_doaj_org_article_ae466e62bc97425786b179ec6357bd9b</doaj_id><sourcerecordid>3078086997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-2e31c71e36cbb4350707f3e704df23b2593db9769728c1e3ad61f653a1c440273</originalsourceid><addsrcrecordid>eNpNUU1r3DAQNaWFhjS_oDkIcvZW37KOi9k0C4Eetj0LSR57tcSSI3sL---rjUPJXGaYmffm41XVd4I3hGD9Y9u2u8NhQzHlG8ZxowX9VN1QInXNBJOfP8Rfq7t5PuFiTUkJdVP1W3SAMdSH8wT5b5ihQ9tpysn6I2rT6EIMcUD70Q6AbOzQY4bXM0R_Qbt4tNHDCHFBfcpo54_J29yFNGQ7HS-Fd7gW7RJS_FZ96e3LDHfv_rb687j73T7Vz79-7tvtc-1po5eaAiNeEWDSO8eZwAqrnoHCvOspc1Ro1jmtpFa08aXNdpL0UjBLPOeYKnZb7VfeLtmTmXIYbb6YZIN5S6Q8GJuX4F_AWOBSgqTOa8WpUI10RGnwkgnlOu0K18PKVd5Rbp4Xc0rnHMv6hmHV4EZqfZ3I1i6f0zxn6P9PJdhc9TGrPuaqj3nXp6DuV1QAgA8IwaWWnP0D7TSLhQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078086997</pqid></control><display><type>article</type><title>A Semi-Supervised Approach Combining Image and Frequency Enhancement for Echocardiography Segmentation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ding, Jiajun ; Han, Xiaoxiang</creator><creatorcontrib>Ding, Jiajun ; Han, Xiaoxiang</creatorcontrib><description>Segmentation of internal structures in echocardiography enables quantitative measurements of the cardiac size, shape, and function, thereby facilitating automated diagnosis and treatment planning. Semi-supervised learning alleviates the demand for large amounts of annotations in deep learning. The existing interpolation-based data augmentation (perturbation) methods demonstrate significant potential, yet they solely focus on operating pixels in the spatial domain, overlooking considerations in the frequency domain. Our proposed interpolation method at the frequency domain level operates on a level where the spatial arrangement of pixels is less relevant. It is capable of generating potent and diverse perturbations while concurrently circumventing disruption to the spatial structure of the image, thereby augmenting the robustness of semi-supervised frameworks. Specifically, we transform annotated and unannotated images into the frequency domain separately. Then, half of the elements in each frequency domain map are randomly selected and mixed with each other. Finally, the resulting mixed frequency domain images are transformed back into the spatial domain to generate mixed images. Furthermore, we refine the spatial domain CutMix method by devising a cutting strategy that adheres to jigsaw partitioning rules, facilitating the model's perception of local cardiac anatomical structures. Extensive experiments on two public echocardiography segmentation datasets demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3408952</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Annotations ; Data augmentation ; Data models ; Deep learning ; Echocardiography ; frequency domain ; Frequency domain analysis ; Image enhancement ; Image segmentation ; Interpolation ; Perturbation ; Perturbation methods ; Pixels ; semantic segmentation ; Semi-supervised learning ; Semisupervised learning</subject><ispartof>IEEE access, 2024, Vol.12, p.92549-92559</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-2e31c71e36cbb4350707f3e704df23b2593db9769728c1e3ad61f653a1c440273</cites><orcidid>0000-0002-1946-2067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10546964$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Ding, Jiajun</creatorcontrib><creatorcontrib>Han, Xiaoxiang</creatorcontrib><title>A Semi-Supervised Approach Combining Image and Frequency Enhancement for Echocardiography Segmentation</title><title>IEEE access</title><addtitle>Access</addtitle><description>Segmentation of internal structures in echocardiography enables quantitative measurements of the cardiac size, shape, and function, thereby facilitating automated diagnosis and treatment planning. Semi-supervised learning alleviates the demand for large amounts of annotations in deep learning. The existing interpolation-based data augmentation (perturbation) methods demonstrate significant potential, yet they solely focus on operating pixels in the spatial domain, overlooking considerations in the frequency domain. Our proposed interpolation method at the frequency domain level operates on a level where the spatial arrangement of pixels is less relevant. It is capable of generating potent and diverse perturbations while concurrently circumventing disruption to the spatial structure of the image, thereby augmenting the robustness of semi-supervised frameworks. Specifically, we transform annotated and unannotated images into the frequency domain separately. Then, half of the elements in each frequency domain map are randomly selected and mixed with each other. Finally, the resulting mixed frequency domain images are transformed back into the spatial domain to generate mixed images. Furthermore, we refine the spatial domain CutMix method by devising a cutting strategy that adheres to jigsaw partitioning rules, facilitating the model's perception of local cardiac anatomical structures. Extensive experiments on two public echocardiography segmentation datasets demonstrate the effectiveness of the proposed method.</description><subject>Annotations</subject><subject>Data augmentation</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Echocardiography</subject><subject>frequency domain</subject><subject>Frequency domain analysis</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Interpolation</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Pixels</subject><subject>semantic segmentation</subject><subject>Semi-supervised learning</subject><subject>Semisupervised learning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAQNaWFhjS_oDkIcvZW37KOi9k0C4Eetj0LSR57tcSSI3sL---rjUPJXGaYmffm41XVd4I3hGD9Y9u2u8NhQzHlG8ZxowX9VN1QInXNBJOfP8Rfq7t5PuFiTUkJdVP1W3SAMdSH8wT5b5ihQ9tpysn6I2rT6EIMcUD70Q6AbOzQY4bXM0R_Qbt4tNHDCHFBfcpo54_J29yFNGQ7HS-Fd7gW7RJS_FZ96e3LDHfv_rb687j73T7Vz79-7tvtc-1po5eaAiNeEWDSO8eZwAqrnoHCvOspc1Ro1jmtpFa08aXNdpL0UjBLPOeYKnZb7VfeLtmTmXIYbb6YZIN5S6Q8GJuX4F_AWOBSgqTOa8WpUI10RGnwkgnlOu0K18PKVd5Rbp4Xc0rnHMv6hmHV4EZqfZ3I1i6f0zxn6P9PJdhc9TGrPuaqj3nXp6DuV1QAgA8IwaWWnP0D7TSLhQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ding, Jiajun</creator><creator>Han, Xiaoxiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1946-2067</orcidid></search><sort><creationdate>2024</creationdate><title>A Semi-Supervised Approach Combining Image and Frequency Enhancement for Echocardiography Segmentation</title><author>Ding, Jiajun ; Han, Xiaoxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-2e31c71e36cbb4350707f3e704df23b2593db9769728c1e3ad61f653a1c440273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annotations</topic><topic>Data augmentation</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Echocardiography</topic><topic>frequency domain</topic><topic>Frequency domain analysis</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Interpolation</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Pixels</topic><topic>semantic segmentation</topic><topic>Semi-supervised learning</topic><topic>Semisupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Jiajun</creatorcontrib><creatorcontrib>Han, Xiaoxiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Jiajun</au><au>Han, Xiaoxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Semi-Supervised Approach Combining Image and Frequency Enhancement for Echocardiography Segmentation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>92549</spage><epage>92559</epage><pages>92549-92559</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Segmentation of internal structures in echocardiography enables quantitative measurements of the cardiac size, shape, and function, thereby facilitating automated diagnosis and treatment planning. Semi-supervised learning alleviates the demand for large amounts of annotations in deep learning. The existing interpolation-based data augmentation (perturbation) methods demonstrate significant potential, yet they solely focus on operating pixels in the spatial domain, overlooking considerations in the frequency domain. Our proposed interpolation method at the frequency domain level operates on a level where the spatial arrangement of pixels is less relevant. It is capable of generating potent and diverse perturbations while concurrently circumventing disruption to the spatial structure of the image, thereby augmenting the robustness of semi-supervised frameworks. Specifically, we transform annotated and unannotated images into the frequency domain separately. Then, half of the elements in each frequency domain map are randomly selected and mixed with each other. Finally, the resulting mixed frequency domain images are transformed back into the spatial domain to generate mixed images. Furthermore, we refine the spatial domain CutMix method by devising a cutting strategy that adheres to jigsaw partitioning rules, facilitating the model's perception of local cardiac anatomical structures. Extensive experiments on two public echocardiography segmentation datasets demonstrate the effectiveness of the proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3408952</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1946-2067</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.92549-92559
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3408952
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Annotations
Data augmentation
Data models
Deep learning
Echocardiography
frequency domain
Frequency domain analysis
Image enhancement
Image segmentation
Interpolation
Perturbation
Perturbation methods
Pixels
semantic segmentation
Semi-supervised learning
Semisupervised learning
title A Semi-Supervised Approach Combining Image and Frequency Enhancement for Echocardiography Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A49%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Semi-Supervised%20Approach%20Combining%20Image%20and%20Frequency%20Enhancement%20for%20Echocardiography%20Segmentation&rft.jtitle=IEEE%20access&rft.au=Ding,%20Jiajun&rft.date=2024&rft.volume=12&rft.spage=92549&rft.epage=92559&rft.pages=92549-92559&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3408952&rft_dat=%3Cproquest_cross%3E3078086997%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3078086997&rft_id=info:pmid/&rft_ieee_id=10546964&rft_doaj_id=oai_doaj_org_article_ae466e62bc97425786b179ec6357bd9b&rfr_iscdi=true