A Two-Stage Deep Fusion Integration Framework Based on Feature Fusion and Residual Correction for Gold Price Forecasting
Given the far-reaching impact of the gold price on global financial markets, accurately predicting the gold price has become essential, with machine learning methods emerging as a prominent tool to tackle this challenge. Nonetheless, traditional single prediction models usually suffer from limited p...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.85565-85579 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 85579 |
---|---|
container_issue | |
container_start_page | 85565 |
container_title | IEEE access |
container_volume | 12 |
creator | Qiu, Cihai Zhang, Yitian Qian, Xunrui Wu, Chuhang Lou, Jiacheng Chen, Yang Xi, Yansong Zhang, Weijie Gong, Zhenxi |
description | Given the far-reaching impact of the gold price on global financial markets, accurately predicting the gold price has become essential, with machine learning methods emerging as a prominent tool to tackle this challenge. Nonetheless, traditional single prediction models usually suffer from limited predictive performance and fail to capture complex variability of market behavior. Aiming to solve these limitations, an innovative two-stage hybrid deep integration framework that combines feature extraction and residual correction techniques is proposed with a view to predicting the gold price more accurately. The prediction effectiveness is enhanced by employing a variational modal decomposition to cluster time series data into three classes. The first stage employs variational mode decomposition to categorize time series data, improving computational efficiency and initial prediction accuracy. The second stage refines these predictions through a novel residual correction process, leveraging back propagation, long and short-term memory, and convolutional neural networks. In addition, through the in-depth analysis and processing of residuals, it is demonstrated that starvation of our method further improves the credibility of the prediction results, and effectively predicts the price movements of the four major gold markets. This approach not only provides a remarkably valuable perspective for policy makers, investors, and trading firms in the gold market, but also deals with the shortcomings of a single model in the face of complex market dynamics, and lays the foundation for the development of even more powerful forecasting models in the future. |
doi_str_mv | 10.1109/ACCESS.2024.3408837 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3408837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10546955</ieee_id><doaj_id>oai_doaj_org_article_3f0839ac3a0648209bd35c0950df4d1b</doaj_id><sourcerecordid>3070780958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-987c2fc31784a72e9f3864fb452d831745e3ebb1b49c476ffd3a83a78d39687e3</originalsourceid><addsrcrecordid>eNpNkUFv1DAQhSMEElXpL4CDJc5ZnIwT28cldMtKlUBsOVsTe7zKso0XO1HLv8fbFFRfPHp-742lryjeV3xVVVx_Wnfd9W63qnktViC4UiBfFRd11eoSGmhfv5jfFlcpHXg-KkuNvCge1-zuIZS7CffEvhCd2GZOQxjZdpxoH3E6z5uI9_QQ4i_2GRM5dpYIpznSPzeOjv2gNLgZj6wLMZJ9SvoQ2U04OvY9Dja7Q37ANA3j_l3xxuMx0dXzfVn83FzfdV_L22832259W9pa6anUStraW6ikEihr0h5UK3wvmtqprIqGgPq-6oW2QrbeO0AFKJUD3SpJcFlsl14X8GBOcbjH-McEHMyTEOLeYJwGeyQDnivQaAF5K1TNde-gsVw33Hnhqj53fVy6TjH8nilN5hDmOObvG-CSS5W9KrtgcdkYUork_2-tuDkTMwsxcyZmnonl1IclNRDRi0QjMqgG_gJ0rZFx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070780958</pqid></control><display><type>article</type><title>A Two-Stage Deep Fusion Integration Framework Based on Feature Fusion and Residual Correction for Gold Price Forecasting</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Qiu, Cihai ; Zhang, Yitian ; Qian, Xunrui ; Wu, Chuhang ; Lou, Jiacheng ; Chen, Yang ; Xi, Yansong ; Zhang, Weijie ; Gong, Zhenxi</creator><creatorcontrib>Qiu, Cihai ; Zhang, Yitian ; Qian, Xunrui ; Wu, Chuhang ; Lou, Jiacheng ; Chen, Yang ; Xi, Yansong ; Zhang, Weijie ; Gong, Zhenxi</creatorcontrib><description>Given the far-reaching impact of the gold price on global financial markets, accurately predicting the gold price has become essential, with machine learning methods emerging as a prominent tool to tackle this challenge. Nonetheless, traditional single prediction models usually suffer from limited predictive performance and fail to capture complex variability of market behavior. Aiming to solve these limitations, an innovative two-stage hybrid deep integration framework that combines feature extraction and residual correction techniques is proposed with a view to predicting the gold price more accurately. The prediction effectiveness is enhanced by employing a variational modal decomposition to cluster time series data into three classes. The first stage employs variational mode decomposition to categorize time series data, improving computational efficiency and initial prediction accuracy. The second stage refines these predictions through a novel residual correction process, leveraging back propagation, long and short-term memory, and convolutional neural networks. In addition, through the in-depth analysis and processing of residuals, it is demonstrated that starvation of our method further improves the credibility of the prediction results, and effectively predicts the price movements of the four major gold markets. This approach not only provides a remarkably valuable perspective for policy makers, investors, and trading firms in the gold market, but also deals with the shortcomings of a single model in the face of complex market dynamics, and lays the foundation for the development of even more powerful forecasting models in the future.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3408837</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Back propagation networks ; Biological system modeling ; Computational modeling ; Data models ; Decomposition ; Feature extraction ; Feature fusion ; Financial industry ; Forecasting ; Globalization ; Gold ; integration model ; Machine learning ; Performance prediction ; Prediction models ; Predictive models ; price forecast ; Pricing ; residual correction ; Time series ; Time series analysis</subject><ispartof>IEEE access, 2024, Vol.12, p.85565-85579</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-987c2fc31784a72e9f3864fb452d831745e3ebb1b49c476ffd3a83a78d39687e3</cites><orcidid>0009-0004-5623-4540</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10546955$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Qiu, Cihai</creatorcontrib><creatorcontrib>Zhang, Yitian</creatorcontrib><creatorcontrib>Qian, Xunrui</creatorcontrib><creatorcontrib>Wu, Chuhang</creatorcontrib><creatorcontrib>Lou, Jiacheng</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Xi, Yansong</creatorcontrib><creatorcontrib>Zhang, Weijie</creatorcontrib><creatorcontrib>Gong, Zhenxi</creatorcontrib><title>A Two-Stage Deep Fusion Integration Framework Based on Feature Fusion and Residual Correction for Gold Price Forecasting</title><title>IEEE access</title><addtitle>Access</addtitle><description>Given the far-reaching impact of the gold price on global financial markets, accurately predicting the gold price has become essential, with machine learning methods emerging as a prominent tool to tackle this challenge. Nonetheless, traditional single prediction models usually suffer from limited predictive performance and fail to capture complex variability of market behavior. Aiming to solve these limitations, an innovative two-stage hybrid deep integration framework that combines feature extraction and residual correction techniques is proposed with a view to predicting the gold price more accurately. The prediction effectiveness is enhanced by employing a variational modal decomposition to cluster time series data into three classes. The first stage employs variational mode decomposition to categorize time series data, improving computational efficiency and initial prediction accuracy. The second stage refines these predictions through a novel residual correction process, leveraging back propagation, long and short-term memory, and convolutional neural networks. In addition, through the in-depth analysis and processing of residuals, it is demonstrated that starvation of our method further improves the credibility of the prediction results, and effectively predicts the price movements of the four major gold markets. This approach not only provides a remarkably valuable perspective for policy makers, investors, and trading firms in the gold market, but also deals with the shortcomings of a single model in the face of complex market dynamics, and lays the foundation for the development of even more powerful forecasting models in the future.</description><subject>Artificial neural networks</subject><subject>Back propagation networks</subject><subject>Biological system modeling</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Decomposition</subject><subject>Feature extraction</subject><subject>Feature fusion</subject><subject>Financial industry</subject><subject>Forecasting</subject><subject>Globalization</subject><subject>Gold</subject><subject>integration model</subject><subject>Machine learning</subject><subject>Performance prediction</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>price forecast</subject><subject>Pricing</subject><subject>residual correction</subject><subject>Time series</subject><subject>Time series analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUFv1DAQhSMEElXpL4CDJc5ZnIwT28cldMtKlUBsOVsTe7zKso0XO1HLv8fbFFRfPHp-742lryjeV3xVVVx_Wnfd9W63qnktViC4UiBfFRd11eoSGmhfv5jfFlcpHXg-KkuNvCge1-zuIZS7CffEvhCd2GZOQxjZdpxoH3E6z5uI9_QQ4i_2GRM5dpYIpznSPzeOjv2gNLgZj6wLMZJ9SvoQ2U04OvY9Dja7Q37ANA3j_l3xxuMx0dXzfVn83FzfdV_L22832259W9pa6anUStraW6ikEihr0h5UK3wvmtqprIqGgPq-6oW2QrbeO0AFKJUD3SpJcFlsl14X8GBOcbjH-McEHMyTEOLeYJwGeyQDnivQaAF5K1TNde-gsVw33Hnhqj53fVy6TjH8nilN5hDmOObvG-CSS5W9KrtgcdkYUork_2-tuDkTMwsxcyZmnonl1IclNRDRi0QjMqgG_gJ0rZFx</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Qiu, Cihai</creator><creator>Zhang, Yitian</creator><creator>Qian, Xunrui</creator><creator>Wu, Chuhang</creator><creator>Lou, Jiacheng</creator><creator>Chen, Yang</creator><creator>Xi, Yansong</creator><creator>Zhang, Weijie</creator><creator>Gong, Zhenxi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0004-5623-4540</orcidid></search><sort><creationdate>2024</creationdate><title>A Two-Stage Deep Fusion Integration Framework Based on Feature Fusion and Residual Correction for Gold Price Forecasting</title><author>Qiu, Cihai ; Zhang, Yitian ; Qian, Xunrui ; Wu, Chuhang ; Lou, Jiacheng ; Chen, Yang ; Xi, Yansong ; Zhang, Weijie ; Gong, Zhenxi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-987c2fc31784a72e9f3864fb452d831745e3ebb1b49c476ffd3a83a78d39687e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Back propagation networks</topic><topic>Biological system modeling</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Decomposition</topic><topic>Feature extraction</topic><topic>Feature fusion</topic><topic>Financial industry</topic><topic>Forecasting</topic><topic>Globalization</topic><topic>Gold</topic><topic>integration model</topic><topic>Machine learning</topic><topic>Performance prediction</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>price forecast</topic><topic>Pricing</topic><topic>residual correction</topic><topic>Time series</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Cihai</creatorcontrib><creatorcontrib>Zhang, Yitian</creatorcontrib><creatorcontrib>Qian, Xunrui</creatorcontrib><creatorcontrib>Wu, Chuhang</creatorcontrib><creatorcontrib>Lou, Jiacheng</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Xi, Yansong</creatorcontrib><creatorcontrib>Zhang, Weijie</creatorcontrib><creatorcontrib>Gong, Zhenxi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Cihai</au><au>Zhang, Yitian</au><au>Qian, Xunrui</au><au>Wu, Chuhang</au><au>Lou, Jiacheng</au><au>Chen, Yang</au><au>Xi, Yansong</au><au>Zhang, Weijie</au><au>Gong, Zhenxi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Two-Stage Deep Fusion Integration Framework Based on Feature Fusion and Residual Correction for Gold Price Forecasting</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>85565</spage><epage>85579</epage><pages>85565-85579</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Given the far-reaching impact of the gold price on global financial markets, accurately predicting the gold price has become essential, with machine learning methods emerging as a prominent tool to tackle this challenge. Nonetheless, traditional single prediction models usually suffer from limited predictive performance and fail to capture complex variability of market behavior. Aiming to solve these limitations, an innovative two-stage hybrid deep integration framework that combines feature extraction and residual correction techniques is proposed with a view to predicting the gold price more accurately. The prediction effectiveness is enhanced by employing a variational modal decomposition to cluster time series data into three classes. The first stage employs variational mode decomposition to categorize time series data, improving computational efficiency and initial prediction accuracy. The second stage refines these predictions through a novel residual correction process, leveraging back propagation, long and short-term memory, and convolutional neural networks. In addition, through the in-depth analysis and processing of residuals, it is demonstrated that starvation of our method further improves the credibility of the prediction results, and effectively predicts the price movements of the four major gold markets. This approach not only provides a remarkably valuable perspective for policy makers, investors, and trading firms in the gold market, but also deals with the shortcomings of a single model in the face of complex market dynamics, and lays the foundation for the development of even more powerful forecasting models in the future.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3408837</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0004-5623-4540</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.85565-85579 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2024_3408837 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Artificial neural networks Back propagation networks Biological system modeling Computational modeling Data models Decomposition Feature extraction Feature fusion Financial industry Forecasting Globalization Gold integration model Machine learning Performance prediction Prediction models Predictive models price forecast Pricing residual correction Time series Time series analysis |
title | A Two-Stage Deep Fusion Integration Framework Based on Feature Fusion and Residual Correction for Gold Price Forecasting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A00%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Two-Stage%20Deep%20Fusion%20Integration%20Framework%20Based%20on%20Feature%20Fusion%20and%20Residual%20Correction%20for%20Gold%20Price%20Forecasting&rft.jtitle=IEEE%20access&rft.au=Qiu,%20Cihai&rft.date=2024&rft.volume=12&rft.spage=85565&rft.epage=85579&rft.pages=85565-85579&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3408837&rft_dat=%3Cproquest_cross%3E3070780958%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3070780958&rft_id=info:pmid/&rft_ieee_id=10546955&rft_doaj_id=oai_doaj_org_article_3f0839ac3a0648209bd35c0950df4d1b&rfr_iscdi=true |