A Two-Stage Deep Fusion Integration Framework Based on Feature Fusion and Residual Correction for Gold Price Forecasting

Given the far-reaching impact of the gold price on global financial markets, accurately predicting the gold price has become essential, with machine learning methods emerging as a prominent tool to tackle this challenge. Nonetheless, traditional single prediction models usually suffer from limited p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.85565-85579
Hauptverfasser: Qiu, Cihai, Zhang, Yitian, Qian, Xunrui, Wu, Chuhang, Lou, Jiacheng, Chen, Yang, Xi, Yansong, Zhang, Weijie, Gong, Zhenxi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 85579
container_issue
container_start_page 85565
container_title IEEE access
container_volume 12
creator Qiu, Cihai
Zhang, Yitian
Qian, Xunrui
Wu, Chuhang
Lou, Jiacheng
Chen, Yang
Xi, Yansong
Zhang, Weijie
Gong, Zhenxi
description Given the far-reaching impact of the gold price on global financial markets, accurately predicting the gold price has become essential, with machine learning methods emerging as a prominent tool to tackle this challenge. Nonetheless, traditional single prediction models usually suffer from limited predictive performance and fail to capture complex variability of market behavior. Aiming to solve these limitations, an innovative two-stage hybrid deep integration framework that combines feature extraction and residual correction techniques is proposed with a view to predicting the gold price more accurately. The prediction effectiveness is enhanced by employing a variational modal decomposition to cluster time series data into three classes. The first stage employs variational mode decomposition to categorize time series data, improving computational efficiency and initial prediction accuracy. The second stage refines these predictions through a novel residual correction process, leveraging back propagation, long and short-term memory, and convolutional neural networks. In addition, through the in-depth analysis and processing of residuals, it is demonstrated that starvation of our method further improves the credibility of the prediction results, and effectively predicts the price movements of the four major gold markets. This approach not only provides a remarkably valuable perspective for policy makers, investors, and trading firms in the gold market, but also deals with the shortcomings of a single model in the face of complex market dynamics, and lays the foundation for the development of even more powerful forecasting models in the future.
doi_str_mv 10.1109/ACCESS.2024.3408837
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3408837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10546955</ieee_id><doaj_id>oai_doaj_org_article_3f0839ac3a0648209bd35c0950df4d1b</doaj_id><sourcerecordid>3070780958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-987c2fc31784a72e9f3864fb452d831745e3ebb1b49c476ffd3a83a78d39687e3</originalsourceid><addsrcrecordid>eNpNkUFv1DAQhSMEElXpL4CDJc5ZnIwT28cldMtKlUBsOVsTe7zKso0XO1HLv8fbFFRfPHp-742lryjeV3xVVVx_Wnfd9W63qnktViC4UiBfFRd11eoSGmhfv5jfFlcpHXg-KkuNvCge1-zuIZS7CffEvhCd2GZOQxjZdpxoH3E6z5uI9_QQ4i_2GRM5dpYIpznSPzeOjv2gNLgZj6wLMZJ9SvoQ2U04OvY9Dja7Q37ANA3j_l3xxuMx0dXzfVn83FzfdV_L22832259W9pa6anUStraW6ikEihr0h5UK3wvmtqprIqGgPq-6oW2QrbeO0AFKJUD3SpJcFlsl14X8GBOcbjH-McEHMyTEOLeYJwGeyQDnivQaAF5K1TNde-gsVw33Hnhqj53fVy6TjH8nilN5hDmOObvG-CSS5W9KrtgcdkYUork_2-tuDkTMwsxcyZmnonl1IclNRDRi0QjMqgG_gJ0rZFx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070780958</pqid></control><display><type>article</type><title>A Two-Stage Deep Fusion Integration Framework Based on Feature Fusion and Residual Correction for Gold Price Forecasting</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Qiu, Cihai ; Zhang, Yitian ; Qian, Xunrui ; Wu, Chuhang ; Lou, Jiacheng ; Chen, Yang ; Xi, Yansong ; Zhang, Weijie ; Gong, Zhenxi</creator><creatorcontrib>Qiu, Cihai ; Zhang, Yitian ; Qian, Xunrui ; Wu, Chuhang ; Lou, Jiacheng ; Chen, Yang ; Xi, Yansong ; Zhang, Weijie ; Gong, Zhenxi</creatorcontrib><description>Given the far-reaching impact of the gold price on global financial markets, accurately predicting the gold price has become essential, with machine learning methods emerging as a prominent tool to tackle this challenge. Nonetheless, traditional single prediction models usually suffer from limited predictive performance and fail to capture complex variability of market behavior. Aiming to solve these limitations, an innovative two-stage hybrid deep integration framework that combines feature extraction and residual correction techniques is proposed with a view to predicting the gold price more accurately. The prediction effectiveness is enhanced by employing a variational modal decomposition to cluster time series data into three classes. The first stage employs variational mode decomposition to categorize time series data, improving computational efficiency and initial prediction accuracy. The second stage refines these predictions through a novel residual correction process, leveraging back propagation, long and short-term memory, and convolutional neural networks. In addition, through the in-depth analysis and processing of residuals, it is demonstrated that starvation of our method further improves the credibility of the prediction results, and effectively predicts the price movements of the four major gold markets. This approach not only provides a remarkably valuable perspective for policy makers, investors, and trading firms in the gold market, but also deals with the shortcomings of a single model in the face of complex market dynamics, and lays the foundation for the development of even more powerful forecasting models in the future.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3408837</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Back propagation networks ; Biological system modeling ; Computational modeling ; Data models ; Decomposition ; Feature extraction ; Feature fusion ; Financial industry ; Forecasting ; Globalization ; Gold ; integration model ; Machine learning ; Performance prediction ; Prediction models ; Predictive models ; price forecast ; Pricing ; residual correction ; Time series ; Time series analysis</subject><ispartof>IEEE access, 2024, Vol.12, p.85565-85579</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-987c2fc31784a72e9f3864fb452d831745e3ebb1b49c476ffd3a83a78d39687e3</cites><orcidid>0009-0004-5623-4540</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10546955$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Qiu, Cihai</creatorcontrib><creatorcontrib>Zhang, Yitian</creatorcontrib><creatorcontrib>Qian, Xunrui</creatorcontrib><creatorcontrib>Wu, Chuhang</creatorcontrib><creatorcontrib>Lou, Jiacheng</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Xi, Yansong</creatorcontrib><creatorcontrib>Zhang, Weijie</creatorcontrib><creatorcontrib>Gong, Zhenxi</creatorcontrib><title>A Two-Stage Deep Fusion Integration Framework Based on Feature Fusion and Residual Correction for Gold Price Forecasting</title><title>IEEE access</title><addtitle>Access</addtitle><description>Given the far-reaching impact of the gold price on global financial markets, accurately predicting the gold price has become essential, with machine learning methods emerging as a prominent tool to tackle this challenge. Nonetheless, traditional single prediction models usually suffer from limited predictive performance and fail to capture complex variability of market behavior. Aiming to solve these limitations, an innovative two-stage hybrid deep integration framework that combines feature extraction and residual correction techniques is proposed with a view to predicting the gold price more accurately. The prediction effectiveness is enhanced by employing a variational modal decomposition to cluster time series data into three classes. The first stage employs variational mode decomposition to categorize time series data, improving computational efficiency and initial prediction accuracy. The second stage refines these predictions through a novel residual correction process, leveraging back propagation, long and short-term memory, and convolutional neural networks. In addition, through the in-depth analysis and processing of residuals, it is demonstrated that starvation of our method further improves the credibility of the prediction results, and effectively predicts the price movements of the four major gold markets. This approach not only provides a remarkably valuable perspective for policy makers, investors, and trading firms in the gold market, but also deals with the shortcomings of a single model in the face of complex market dynamics, and lays the foundation for the development of even more powerful forecasting models in the future.</description><subject>Artificial neural networks</subject><subject>Back propagation networks</subject><subject>Biological system modeling</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Decomposition</subject><subject>Feature extraction</subject><subject>Feature fusion</subject><subject>Financial industry</subject><subject>Forecasting</subject><subject>Globalization</subject><subject>Gold</subject><subject>integration model</subject><subject>Machine learning</subject><subject>Performance prediction</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>price forecast</subject><subject>Pricing</subject><subject>residual correction</subject><subject>Time series</subject><subject>Time series analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUFv1DAQhSMEElXpL4CDJc5ZnIwT28cldMtKlUBsOVsTe7zKso0XO1HLv8fbFFRfPHp-742lryjeV3xVVVx_Wnfd9W63qnktViC4UiBfFRd11eoSGmhfv5jfFlcpHXg-KkuNvCge1-zuIZS7CffEvhCd2GZOQxjZdpxoH3E6z5uI9_QQ4i_2GRM5dpYIpznSPzeOjv2gNLgZj6wLMZJ9SvoQ2U04OvY9Dja7Q37ANA3j_l3xxuMx0dXzfVn83FzfdV_L22832259W9pa6anUStraW6ikEihr0h5UK3wvmtqprIqGgPq-6oW2QrbeO0AFKJUD3SpJcFlsl14X8GBOcbjH-McEHMyTEOLeYJwGeyQDnivQaAF5K1TNde-gsVw33Hnhqj53fVy6TjH8nilN5hDmOObvG-CSS5W9KrtgcdkYUork_2-tuDkTMwsxcyZmnonl1IclNRDRi0QjMqgG_gJ0rZFx</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Qiu, Cihai</creator><creator>Zhang, Yitian</creator><creator>Qian, Xunrui</creator><creator>Wu, Chuhang</creator><creator>Lou, Jiacheng</creator><creator>Chen, Yang</creator><creator>Xi, Yansong</creator><creator>Zhang, Weijie</creator><creator>Gong, Zhenxi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0004-5623-4540</orcidid></search><sort><creationdate>2024</creationdate><title>A Two-Stage Deep Fusion Integration Framework Based on Feature Fusion and Residual Correction for Gold Price Forecasting</title><author>Qiu, Cihai ; Zhang, Yitian ; Qian, Xunrui ; Wu, Chuhang ; Lou, Jiacheng ; Chen, Yang ; Xi, Yansong ; Zhang, Weijie ; Gong, Zhenxi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-987c2fc31784a72e9f3864fb452d831745e3ebb1b49c476ffd3a83a78d39687e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Back propagation networks</topic><topic>Biological system modeling</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Decomposition</topic><topic>Feature extraction</topic><topic>Feature fusion</topic><topic>Financial industry</topic><topic>Forecasting</topic><topic>Globalization</topic><topic>Gold</topic><topic>integration model</topic><topic>Machine learning</topic><topic>Performance prediction</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>price forecast</topic><topic>Pricing</topic><topic>residual correction</topic><topic>Time series</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Cihai</creatorcontrib><creatorcontrib>Zhang, Yitian</creatorcontrib><creatorcontrib>Qian, Xunrui</creatorcontrib><creatorcontrib>Wu, Chuhang</creatorcontrib><creatorcontrib>Lou, Jiacheng</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Xi, Yansong</creatorcontrib><creatorcontrib>Zhang, Weijie</creatorcontrib><creatorcontrib>Gong, Zhenxi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Cihai</au><au>Zhang, Yitian</au><au>Qian, Xunrui</au><au>Wu, Chuhang</au><au>Lou, Jiacheng</au><au>Chen, Yang</au><au>Xi, Yansong</au><au>Zhang, Weijie</au><au>Gong, Zhenxi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Two-Stage Deep Fusion Integration Framework Based on Feature Fusion and Residual Correction for Gold Price Forecasting</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>85565</spage><epage>85579</epage><pages>85565-85579</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Given the far-reaching impact of the gold price on global financial markets, accurately predicting the gold price has become essential, with machine learning methods emerging as a prominent tool to tackle this challenge. Nonetheless, traditional single prediction models usually suffer from limited predictive performance and fail to capture complex variability of market behavior. Aiming to solve these limitations, an innovative two-stage hybrid deep integration framework that combines feature extraction and residual correction techniques is proposed with a view to predicting the gold price more accurately. The prediction effectiveness is enhanced by employing a variational modal decomposition to cluster time series data into three classes. The first stage employs variational mode decomposition to categorize time series data, improving computational efficiency and initial prediction accuracy. The second stage refines these predictions through a novel residual correction process, leveraging back propagation, long and short-term memory, and convolutional neural networks. In addition, through the in-depth analysis and processing of residuals, it is demonstrated that starvation of our method further improves the credibility of the prediction results, and effectively predicts the price movements of the four major gold markets. This approach not only provides a remarkably valuable perspective for policy makers, investors, and trading firms in the gold market, but also deals with the shortcomings of a single model in the face of complex market dynamics, and lays the foundation for the development of even more powerful forecasting models in the future.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3408837</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0004-5623-4540</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.85565-85579
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3408837
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Artificial neural networks
Back propagation networks
Biological system modeling
Computational modeling
Data models
Decomposition
Feature extraction
Feature fusion
Financial industry
Forecasting
Globalization
Gold
integration model
Machine learning
Performance prediction
Prediction models
Predictive models
price forecast
Pricing
residual correction
Time series
Time series analysis
title A Two-Stage Deep Fusion Integration Framework Based on Feature Fusion and Residual Correction for Gold Price Forecasting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A00%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Two-Stage%20Deep%20Fusion%20Integration%20Framework%20Based%20on%20Feature%20Fusion%20and%20Residual%20Correction%20for%20Gold%20Price%20Forecasting&rft.jtitle=IEEE%20access&rft.au=Qiu,%20Cihai&rft.date=2024&rft.volume=12&rft.spage=85565&rft.epage=85579&rft.pages=85565-85579&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3408837&rft_dat=%3Cproquest_cross%3E3070780958%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3070780958&rft_id=info:pmid/&rft_ieee_id=10546955&rft_doaj_id=oai_doaj_org_article_3f0839ac3a0648209bd35c0950df4d1b&rfr_iscdi=true