Deep Learning Algorithms for Cyber-Bulling Detection in Social Media Platforms

Social media platforms are among the most widely used means of communication. However, some individuals exploit these platforms for nefarious purposes, with "cyberbullying" being particularly prevalent. Cyberbullying, which involves using electronic means to harass or harm others, is espec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.76901-76908
Hauptverfasser: Obaida, Mohammed Hussein, Elkaffas, Saleh Mesbah, Guirguis, Shawkat Kamal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76908
container_issue
container_start_page 76901
container_title IEEE access
container_volume 12
creator Obaida, Mohammed Hussein
Elkaffas, Saleh Mesbah
Guirguis, Shawkat Kamal
description Social media platforms are among the most widely used means of communication. However, some individuals exploit these platforms for nefarious purposes, with "cyberbullying" being particularly prevalent. Cyberbullying, which involves using electronic means to harass or harm others, is especially common among young people. Consequently, this study aims to propose a model for detecting cyberbullying using a deep learning algorithm. Three datasets from Twitter, Instagram, and Facebook were utilized to predict instances of bullying using the Long Short-Term Memory (LSTM) method. The results obtained revealed the development of an effective model for detecting cyberbullying, addressing challenges faced by previous cyberbullying detection techniques. The model achieved accuracies of approximately 96.64%, 94.49%, and 91.26% for the Twitter, Instagram, and Facebook datasets, respectively.
doi_str_mv 10.1109/ACCESS.2024.3406595
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3406595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10540101</ieee_id><doaj_id>oai_doaj_org_article_adb915ec2c5e48c5914959ca3cfc5617</doaj_id><sourcerecordid>3064713088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-53835d31ec64ce291e7f335e453c3362eb37eb053f69103cab0b54b1536181783</originalsourceid><addsrcrecordid>eNpNUU1PwzAMrRBITGO_AA6VOHfEddM2x9ENmDQ-pME5SlN3ZOqakXaH_XtaOqH5Ysv2e8_W87xbYFMAJh5mWbZYr6chC6MpRizmgl94oxBiESDH-PKsvvYmTbNlXaRdiycj721OtPdXpFxt6o0_qzbWmfZ71_ildX52zMkFj4eq6odzakm3xta-qf211UZV_isVRvkflWq7_V1z412Vqmpocspj7-tp8Zm9BKv352U2WwUauWgDjinyAoF0HGkKBVBSInKKOGrEOKQcE8oZxzIWwFCrnOU8yqF7AVJIUhx7y4G3sGor987slDtKq4z8a1i3kcq1RlckVZEL4KRD3fGnmguIBBdaoS41jyHpuO4Hrr2zPwdqWrm1B1d350tkcZQAsrRXxGFLO9s0jsp_VWCy90EOPsjeB3nyoUPdDShDRGcIHjFggL8sMIHl</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064713088</pqid></control><display><type>article</type><title>Deep Learning Algorithms for Cyber-Bulling Detection in Social Media Platforms</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Obaida, Mohammed Hussein ; Elkaffas, Saleh Mesbah ; Guirguis, Shawkat Kamal</creator><creatorcontrib>Obaida, Mohammed Hussein ; Elkaffas, Saleh Mesbah ; Guirguis, Shawkat Kamal</creatorcontrib><description>Social media platforms are among the most widely used means of communication. However, some individuals exploit these platforms for nefarious purposes, with "cyberbullying" being particularly prevalent. Cyberbullying, which involves using electronic means to harass or harm others, is especially common among young people. Consequently, this study aims to propose a model for detecting cyberbullying using a deep learning algorithm. Three datasets from Twitter, Instagram, and Facebook were utilized to predict instances of bullying using the Long Short-Term Memory (LSTM) method. The results obtained revealed the development of an effective model for detecting cyberbullying, addressing challenges faced by previous cyberbullying detection techniques. The model achieved accuracies of approximately 96.64%, 94.49%, and 91.26% for the Twitter, Instagram, and Facebook datasets, respectively.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3406595</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Blogs ; Bullying ; Convolutional neural networks ; Cyberbullying ; Datasets ; Deep learning ; Digital media ; Hate speech ; Long short term memory ; LSTM ; Machine learning ; Social networking (online) ; Social networks ; Support vector machines ; Young adults</subject><ispartof>IEEE access, 2024, Vol.12, p.76901-76908</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-53835d31ec64ce291e7f335e453c3362eb37eb053f69103cab0b54b1536181783</cites><orcidid>0000-0003-0010-6991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10540101$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Obaida, Mohammed Hussein</creatorcontrib><creatorcontrib>Elkaffas, Saleh Mesbah</creatorcontrib><creatorcontrib>Guirguis, Shawkat Kamal</creatorcontrib><title>Deep Learning Algorithms for Cyber-Bulling Detection in Social Media Platforms</title><title>IEEE access</title><addtitle>Access</addtitle><description>Social media platforms are among the most widely used means of communication. However, some individuals exploit these platforms for nefarious purposes, with "cyberbullying" being particularly prevalent. Cyberbullying, which involves using electronic means to harass or harm others, is especially common among young people. Consequently, this study aims to propose a model for detecting cyberbullying using a deep learning algorithm. Three datasets from Twitter, Instagram, and Facebook were utilized to predict instances of bullying using the Long Short-Term Memory (LSTM) method. The results obtained revealed the development of an effective model for detecting cyberbullying, addressing challenges faced by previous cyberbullying detection techniques. The model achieved accuracies of approximately 96.64%, 94.49%, and 91.26% for the Twitter, Instagram, and Facebook datasets, respectively.</description><subject>Algorithms</subject><subject>Blogs</subject><subject>Bullying</subject><subject>Convolutional neural networks</subject><subject>Cyberbullying</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Digital media</subject><subject>Hate speech</subject><subject>Long short term memory</subject><subject>LSTM</subject><subject>Machine learning</subject><subject>Social networking (online)</subject><subject>Social networks</subject><subject>Support vector machines</subject><subject>Young adults</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwzAMrRBITGO_AA6VOHfEddM2x9ENmDQ-pME5SlN3ZOqakXaH_XtaOqH5Ysv2e8_W87xbYFMAJh5mWbZYr6chC6MpRizmgl94oxBiESDH-PKsvvYmTbNlXaRdiycj721OtPdXpFxt6o0_qzbWmfZ71_ildX52zMkFj4eq6odzakm3xta-qf211UZV_isVRvkflWq7_V1z412Vqmpocspj7-tp8Zm9BKv352U2WwUauWgDjinyAoF0HGkKBVBSInKKOGrEOKQcE8oZxzIWwFCrnOU8yqF7AVJIUhx7y4G3sGor987slDtKq4z8a1i3kcq1RlckVZEL4KRD3fGnmguIBBdaoS41jyHpuO4Hrr2zPwdqWrm1B1d350tkcZQAsrRXxGFLO9s0jsp_VWCy90EOPsjeB3nyoUPdDShDRGcIHjFggL8sMIHl</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Obaida, Mohammed Hussein</creator><creator>Elkaffas, Saleh Mesbah</creator><creator>Guirguis, Shawkat Kamal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0010-6991</orcidid></search><sort><creationdate>2024</creationdate><title>Deep Learning Algorithms for Cyber-Bulling Detection in Social Media Platforms</title><author>Obaida, Mohammed Hussein ; Elkaffas, Saleh Mesbah ; Guirguis, Shawkat Kamal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-53835d31ec64ce291e7f335e453c3362eb37eb053f69103cab0b54b1536181783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Blogs</topic><topic>Bullying</topic><topic>Convolutional neural networks</topic><topic>Cyberbullying</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Digital media</topic><topic>Hate speech</topic><topic>Long short term memory</topic><topic>LSTM</topic><topic>Machine learning</topic><topic>Social networking (online)</topic><topic>Social networks</topic><topic>Support vector machines</topic><topic>Young adults</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obaida, Mohammed Hussein</creatorcontrib><creatorcontrib>Elkaffas, Saleh Mesbah</creatorcontrib><creatorcontrib>Guirguis, Shawkat Kamal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obaida, Mohammed Hussein</au><au>Elkaffas, Saleh Mesbah</au><au>Guirguis, Shawkat Kamal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning Algorithms for Cyber-Bulling Detection in Social Media Platforms</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>76901</spage><epage>76908</epage><pages>76901-76908</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Social media platforms are among the most widely used means of communication. However, some individuals exploit these platforms for nefarious purposes, with "cyberbullying" being particularly prevalent. Cyberbullying, which involves using electronic means to harass or harm others, is especially common among young people. Consequently, this study aims to propose a model for detecting cyberbullying using a deep learning algorithm. Three datasets from Twitter, Instagram, and Facebook were utilized to predict instances of bullying using the Long Short-Term Memory (LSTM) method. The results obtained revealed the development of an effective model for detecting cyberbullying, addressing challenges faced by previous cyberbullying detection techniques. The model achieved accuracies of approximately 96.64%, 94.49%, and 91.26% for the Twitter, Instagram, and Facebook datasets, respectively.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3406595</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0010-6991</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.76901-76908
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3406595
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Blogs
Bullying
Convolutional neural networks
Cyberbullying
Datasets
Deep learning
Digital media
Hate speech
Long short term memory
LSTM
Machine learning
Social networking (online)
Social networks
Support vector machines
Young adults
title Deep Learning Algorithms for Cyber-Bulling Detection in Social Media Platforms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A44%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20Algorithms%20for%20Cyber-Bulling%20Detection%20in%20Social%20Media%20Platforms&rft.jtitle=IEEE%20access&rft.au=Obaida,%20Mohammed%20Hussein&rft.date=2024&rft.volume=12&rft.spage=76901&rft.epage=76908&rft.pages=76901-76908&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3406595&rft_dat=%3Cproquest_cross%3E3064713088%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064713088&rft_id=info:pmid/&rft_ieee_id=10540101&rft_doaj_id=oai_doaj_org_article_adb915ec2c5e48c5914959ca3cfc5617&rfr_iscdi=true