Deep Learning Algorithms for Cyber-Bulling Detection in Social Media Platforms
Social media platforms are among the most widely used means of communication. However, some individuals exploit these platforms for nefarious purposes, with "cyberbullying" being particularly prevalent. Cyberbullying, which involves using electronic means to harass or harm others, is espec...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.76901-76908 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 76908 |
---|---|
container_issue | |
container_start_page | 76901 |
container_title | IEEE access |
container_volume | 12 |
creator | Obaida, Mohammed Hussein Elkaffas, Saleh Mesbah Guirguis, Shawkat Kamal |
description | Social media platforms are among the most widely used means of communication. However, some individuals exploit these platforms for nefarious purposes, with "cyberbullying" being particularly prevalent. Cyberbullying, which involves using electronic means to harass or harm others, is especially common among young people. Consequently, this study aims to propose a model for detecting cyberbullying using a deep learning algorithm. Three datasets from Twitter, Instagram, and Facebook were utilized to predict instances of bullying using the Long Short-Term Memory (LSTM) method. The results obtained revealed the development of an effective model for detecting cyberbullying, addressing challenges faced by previous cyberbullying detection techniques. The model achieved accuracies of approximately 96.64%, 94.49%, and 91.26% for the Twitter, Instagram, and Facebook datasets, respectively. |
doi_str_mv | 10.1109/ACCESS.2024.3406595 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3406595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10540101</ieee_id><doaj_id>oai_doaj_org_article_adb915ec2c5e48c5914959ca3cfc5617</doaj_id><sourcerecordid>3064713088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-53835d31ec64ce291e7f335e453c3362eb37eb053f69103cab0b54b1536181783</originalsourceid><addsrcrecordid>eNpNUU1PwzAMrRBITGO_AA6VOHfEddM2x9ENmDQ-pME5SlN3ZOqakXaH_XtaOqH5Ysv2e8_W87xbYFMAJh5mWbZYr6chC6MpRizmgl94oxBiESDH-PKsvvYmTbNlXaRdiycj721OtPdXpFxt6o0_qzbWmfZ71_ildX52zMkFj4eq6odzakm3xta-qf211UZV_isVRvkflWq7_V1z412Vqmpocspj7-tp8Zm9BKv352U2WwUauWgDjinyAoF0HGkKBVBSInKKOGrEOKQcE8oZxzIWwFCrnOU8yqF7AVJIUhx7y4G3sGor987slDtKq4z8a1i3kcq1RlckVZEL4KRD3fGnmguIBBdaoS41jyHpuO4Hrr2zPwdqWrm1B1d350tkcZQAsrRXxGFLO9s0jsp_VWCy90EOPsjeB3nyoUPdDShDRGcIHjFggL8sMIHl</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064713088</pqid></control><display><type>article</type><title>Deep Learning Algorithms for Cyber-Bulling Detection in Social Media Platforms</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Obaida, Mohammed Hussein ; Elkaffas, Saleh Mesbah ; Guirguis, Shawkat Kamal</creator><creatorcontrib>Obaida, Mohammed Hussein ; Elkaffas, Saleh Mesbah ; Guirguis, Shawkat Kamal</creatorcontrib><description>Social media platforms are among the most widely used means of communication. However, some individuals exploit these platforms for nefarious purposes, with "cyberbullying" being particularly prevalent. Cyberbullying, which involves using electronic means to harass or harm others, is especially common among young people. Consequently, this study aims to propose a model for detecting cyberbullying using a deep learning algorithm. Three datasets from Twitter, Instagram, and Facebook were utilized to predict instances of bullying using the Long Short-Term Memory (LSTM) method. The results obtained revealed the development of an effective model for detecting cyberbullying, addressing challenges faced by previous cyberbullying detection techniques. The model achieved accuracies of approximately 96.64%, 94.49%, and 91.26% for the Twitter, Instagram, and Facebook datasets, respectively.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3406595</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Blogs ; Bullying ; Convolutional neural networks ; Cyberbullying ; Datasets ; Deep learning ; Digital media ; Hate speech ; Long short term memory ; LSTM ; Machine learning ; Social networking (online) ; Social networks ; Support vector machines ; Young adults</subject><ispartof>IEEE access, 2024, Vol.12, p.76901-76908</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-53835d31ec64ce291e7f335e453c3362eb37eb053f69103cab0b54b1536181783</cites><orcidid>0000-0003-0010-6991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10540101$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Obaida, Mohammed Hussein</creatorcontrib><creatorcontrib>Elkaffas, Saleh Mesbah</creatorcontrib><creatorcontrib>Guirguis, Shawkat Kamal</creatorcontrib><title>Deep Learning Algorithms for Cyber-Bulling Detection in Social Media Platforms</title><title>IEEE access</title><addtitle>Access</addtitle><description>Social media platforms are among the most widely used means of communication. However, some individuals exploit these platforms for nefarious purposes, with "cyberbullying" being particularly prevalent. Cyberbullying, which involves using electronic means to harass or harm others, is especially common among young people. Consequently, this study aims to propose a model for detecting cyberbullying using a deep learning algorithm. Three datasets from Twitter, Instagram, and Facebook were utilized to predict instances of bullying using the Long Short-Term Memory (LSTM) method. The results obtained revealed the development of an effective model for detecting cyberbullying, addressing challenges faced by previous cyberbullying detection techniques. The model achieved accuracies of approximately 96.64%, 94.49%, and 91.26% for the Twitter, Instagram, and Facebook datasets, respectively.</description><subject>Algorithms</subject><subject>Blogs</subject><subject>Bullying</subject><subject>Convolutional neural networks</subject><subject>Cyberbullying</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Digital media</subject><subject>Hate speech</subject><subject>Long short term memory</subject><subject>LSTM</subject><subject>Machine learning</subject><subject>Social networking (online)</subject><subject>Social networks</subject><subject>Support vector machines</subject><subject>Young adults</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwzAMrRBITGO_AA6VOHfEddM2x9ENmDQ-pME5SlN3ZOqakXaH_XtaOqH5Ysv2e8_W87xbYFMAJh5mWbZYr6chC6MpRizmgl94oxBiESDH-PKsvvYmTbNlXaRdiycj721OtPdXpFxt6o0_qzbWmfZ71_ildX52zMkFj4eq6odzakm3xta-qf211UZV_isVRvkflWq7_V1z412Vqmpocspj7-tp8Zm9BKv352U2WwUauWgDjinyAoF0HGkKBVBSInKKOGrEOKQcE8oZxzIWwFCrnOU8yqF7AVJIUhx7y4G3sGor987slDtKq4z8a1i3kcq1RlckVZEL4KRD3fGnmguIBBdaoS41jyHpuO4Hrr2zPwdqWrm1B1d350tkcZQAsrRXxGFLO9s0jsp_VWCy90EOPsjeB3nyoUPdDShDRGcIHjFggL8sMIHl</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Obaida, Mohammed Hussein</creator><creator>Elkaffas, Saleh Mesbah</creator><creator>Guirguis, Shawkat Kamal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0010-6991</orcidid></search><sort><creationdate>2024</creationdate><title>Deep Learning Algorithms for Cyber-Bulling Detection in Social Media Platforms</title><author>Obaida, Mohammed Hussein ; Elkaffas, Saleh Mesbah ; Guirguis, Shawkat Kamal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-53835d31ec64ce291e7f335e453c3362eb37eb053f69103cab0b54b1536181783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Blogs</topic><topic>Bullying</topic><topic>Convolutional neural networks</topic><topic>Cyberbullying</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Digital media</topic><topic>Hate speech</topic><topic>Long short term memory</topic><topic>LSTM</topic><topic>Machine learning</topic><topic>Social networking (online)</topic><topic>Social networks</topic><topic>Support vector machines</topic><topic>Young adults</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obaida, Mohammed Hussein</creatorcontrib><creatorcontrib>Elkaffas, Saleh Mesbah</creatorcontrib><creatorcontrib>Guirguis, Shawkat Kamal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obaida, Mohammed Hussein</au><au>Elkaffas, Saleh Mesbah</au><au>Guirguis, Shawkat Kamal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning Algorithms for Cyber-Bulling Detection in Social Media Platforms</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>76901</spage><epage>76908</epage><pages>76901-76908</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Social media platforms are among the most widely used means of communication. However, some individuals exploit these platforms for nefarious purposes, with "cyberbullying" being particularly prevalent. Cyberbullying, which involves using electronic means to harass or harm others, is especially common among young people. Consequently, this study aims to propose a model for detecting cyberbullying using a deep learning algorithm. Three datasets from Twitter, Instagram, and Facebook were utilized to predict instances of bullying using the Long Short-Term Memory (LSTM) method. The results obtained revealed the development of an effective model for detecting cyberbullying, addressing challenges faced by previous cyberbullying detection techniques. The model achieved accuracies of approximately 96.64%, 94.49%, and 91.26% for the Twitter, Instagram, and Facebook datasets, respectively.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3406595</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0010-6991</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.76901-76908 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2024_3406595 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Blogs Bullying Convolutional neural networks Cyberbullying Datasets Deep learning Digital media Hate speech Long short term memory LSTM Machine learning Social networking (online) Social networks Support vector machines Young adults |
title | Deep Learning Algorithms for Cyber-Bulling Detection in Social Media Platforms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A44%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20Algorithms%20for%20Cyber-Bulling%20Detection%20in%20Social%20Media%20Platforms&rft.jtitle=IEEE%20access&rft.au=Obaida,%20Mohammed%20Hussein&rft.date=2024&rft.volume=12&rft.spage=76901&rft.epage=76908&rft.pages=76901-76908&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3406595&rft_dat=%3Cproquest_cross%3E3064713088%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064713088&rft_id=info:pmid/&rft_ieee_id=10540101&rft_doaj_id=oai_doaj_org_article_adb915ec2c5e48c5914959ca3cfc5617&rfr_iscdi=true |