Coupled Inductor based Boost Microinverter with Dual Mode Time Sharing Operation for Renewable Energy Applications
Household power conversion stages process significant amounts of power when they add up to form a microgrid. Microinverters are considered one of the best choices to utilize the renewable energy harvested power. Microinverter integration encounters several challenges when interfaced with expanding m...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024-01, Vol.12, p.1-1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 12 |
creator | Alhuwaishel, Fahad M. Ahmed, Nabil A. |
description | Household power conversion stages process significant amounts of power when they add up to form a microgrid. Microinverters are considered one of the best choices to utilize the renewable energy harvested power. Microinverter integration encounters several challenges when interfaced with expanding microgrids. This paper proposes a coupled inductor-based boost microinverter operating in dual mode time sharing technique for renewable energy applications. It is composed of an absolute sinewave modulated voltage boost converter and series capacitor connected to the secondary winding of the coupled inductor followed by a single-phase Full bridge inverter. The coupled inductor integration allows a significant reduction in current ripple and improved energy conversion efficiency. In the proposed microinverter, the DC link voltage is not required to be constant, instead, it process an absolute sinewave modulated voltage and then it is unfolded to AC and fed into the grid. The DC link capacitor is substituted by an efficient AC thin film type capacitor. The dual mode time-sharing principle intends to reduce the switching losses of the microinverter and consequently achieves high conversion efficiency. The proposed converter's analysis, design, and simulation are validated on a 2.0 kW setup system using PSIM simulation software. The feasibility and performance of this new microinverter topology is proved experimentally via laboratory prototype. |
doi_str_mv | 10.1109/ACCESS.2024.3405808 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3405808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10539363</ieee_id><doaj_id>oai_doaj_org_article_24b69122251a4d17ba1dfefa01d2b894</doaj_id><sourcerecordid>3062738187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-dfad3e49a9f7c64853f7617f4cc0d5f3d576cdd02bd6e794bd05218a61b3779d3</originalsourceid><addsrcrecordid>eNpNUU1P3DAQjVCRiii_oD1Y4ryLvx0ft-m2rARCYunZcuLx4lWIUzsp4t_XEFQxl_nQe29G86rqK8FrQrC-2jTNdr9fU0z5mnEsalyfVGeUSL1igslPH-rP1UXOR1yiLiOhzqrUxHnswaHd4OZuigm1Npf2e4x5QrehSzEMfyFNkNBzmB7Rj9n26DY6QA_hCdD-0aYwHNDdCMlOIQ7IF417GODZtj2g7QDp8II249iH7g2Qv1Sn3vYZLt7zefX75_ahuV7d3P3aNZubVUdrPa2ct44B11Z71UleC-aVJMrzrsNOeOaEkp1zmLZOgtK8dVhQUltJWqaUduy82i26LtqjGVN4sunFRBvM2yCmg7FpCl0PhvJWakIpFcRyR1RrifPgLSaOtrXmRety0RpT_DNDnswxzmko5xuGJVWsJrUqKLagytdyTuD_byXYvHplFq_Mq1fm3avC-rawAgB8YAimmWTsH7w6kPk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062738187</pqid></control><display><type>article</type><title>Coupled Inductor based Boost Microinverter with Dual Mode Time Sharing Operation for Renewable Energy Applications</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Alhuwaishel, Fahad M. ; Ahmed, Nabil A.</creator><creatorcontrib>Alhuwaishel, Fahad M. ; Ahmed, Nabil A.</creatorcontrib><description>Household power conversion stages process significant amounts of power when they add up to form a microgrid. Microinverters are considered one of the best choices to utilize the renewable energy harvested power. Microinverter integration encounters several challenges when interfaced with expanding microgrids. This paper proposes a coupled inductor-based boost microinverter operating in dual mode time sharing technique for renewable energy applications. It is composed of an absolute sinewave modulated voltage boost converter and series capacitor connected to the secondary winding of the coupled inductor followed by a single-phase Full bridge inverter. The coupled inductor integration allows a significant reduction in current ripple and improved energy conversion efficiency. In the proposed microinverter, the DC link voltage is not required to be constant, instead, it process an absolute sinewave modulated voltage and then it is unfolded to AC and fed into the grid. The DC link capacitor is substituted by an efficient AC thin film type capacitor. The dual mode time-sharing principle intends to reduce the switching losses of the microinverter and consequently achieves high conversion efficiency. The proposed converter's analysis, design, and simulation are validated on a 2.0 kW setup system using PSIM simulation software. The feasibility and performance of this new microinverter topology is proved experimentally via laboratory prototype.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3405808</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>boost converter ; Capacitors ; Coils (windings) ; coupled-inductor ; current ripple reduction ; Distributed generation ; dual mode ; Electric potential ; Electrochemical machining ; electrolytic capacitor ; Energy conversion efficiency ; Fuel cells ; Harmonic distortion ; Inductance ; Inductors ; Inverters ; Microinverter ; Renewable energy ; Renewable resources ; Ripples ; Switches ; Thin films ; Time sharing ; Topology ; Transformers ; Voltage ; Waveforms ; Winding</subject><ispartof>IEEE access, 2024-01, Vol.12, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-dfad3e49a9f7c64853f7617f4cc0d5f3d576cdd02bd6e794bd05218a61b3779d3</cites><orcidid>0000-0002-3256-7955 ; 0000-0003-4319-3343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10539363$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Alhuwaishel, Fahad M.</creatorcontrib><creatorcontrib>Ahmed, Nabil A.</creatorcontrib><title>Coupled Inductor based Boost Microinverter with Dual Mode Time Sharing Operation for Renewable Energy Applications</title><title>IEEE access</title><addtitle>Access</addtitle><description>Household power conversion stages process significant amounts of power when they add up to form a microgrid. Microinverters are considered one of the best choices to utilize the renewable energy harvested power. Microinverter integration encounters several challenges when interfaced with expanding microgrids. This paper proposes a coupled inductor-based boost microinverter operating in dual mode time sharing technique for renewable energy applications. It is composed of an absolute sinewave modulated voltage boost converter and series capacitor connected to the secondary winding of the coupled inductor followed by a single-phase Full bridge inverter. The coupled inductor integration allows a significant reduction in current ripple and improved energy conversion efficiency. In the proposed microinverter, the DC link voltage is not required to be constant, instead, it process an absolute sinewave modulated voltage and then it is unfolded to AC and fed into the grid. The DC link capacitor is substituted by an efficient AC thin film type capacitor. The dual mode time-sharing principle intends to reduce the switching losses of the microinverter and consequently achieves high conversion efficiency. The proposed converter's analysis, design, and simulation are validated on a 2.0 kW setup system using PSIM simulation software. The feasibility and performance of this new microinverter topology is proved experimentally via laboratory prototype.</description><subject>boost converter</subject><subject>Capacitors</subject><subject>Coils (windings)</subject><subject>coupled-inductor</subject><subject>current ripple reduction</subject><subject>Distributed generation</subject><subject>dual mode</subject><subject>Electric potential</subject><subject>Electrochemical machining</subject><subject>electrolytic capacitor</subject><subject>Energy conversion efficiency</subject><subject>Fuel cells</subject><subject>Harmonic distortion</subject><subject>Inductance</subject><subject>Inductors</subject><subject>Inverters</subject><subject>Microinverter</subject><subject>Renewable energy</subject><subject>Renewable resources</subject><subject>Ripples</subject><subject>Switches</subject><subject>Thin films</subject><subject>Time sharing</subject><subject>Topology</subject><subject>Transformers</subject><subject>Voltage</subject><subject>Waveforms</subject><subject>Winding</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1P3DAQjVCRiii_oD1Y4ryLvx0ft-m2rARCYunZcuLx4lWIUzsp4t_XEFQxl_nQe29G86rqK8FrQrC-2jTNdr9fU0z5mnEsalyfVGeUSL1igslPH-rP1UXOR1yiLiOhzqrUxHnswaHd4OZuigm1Npf2e4x5QrehSzEMfyFNkNBzmB7Rj9n26DY6QA_hCdD-0aYwHNDdCMlOIQ7IF417GODZtj2g7QDp8II249iH7g2Qv1Sn3vYZLt7zefX75_ahuV7d3P3aNZubVUdrPa2ct44B11Z71UleC-aVJMrzrsNOeOaEkp1zmLZOgtK8dVhQUltJWqaUduy82i26LtqjGVN4sunFRBvM2yCmg7FpCl0PhvJWakIpFcRyR1RrifPgLSaOtrXmRety0RpT_DNDnswxzmko5xuGJVWsJrUqKLagytdyTuD_byXYvHplFq_Mq1fm3avC-rawAgB8YAimmWTsH7w6kPk</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Alhuwaishel, Fahad M.</creator><creator>Ahmed, Nabil A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3256-7955</orcidid><orcidid>https://orcid.org/0000-0003-4319-3343</orcidid></search><sort><creationdate>20240101</creationdate><title>Coupled Inductor based Boost Microinverter with Dual Mode Time Sharing Operation for Renewable Energy Applications</title><author>Alhuwaishel, Fahad M. ; Ahmed, Nabil A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-dfad3e49a9f7c64853f7617f4cc0d5f3d576cdd02bd6e794bd05218a61b3779d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>boost converter</topic><topic>Capacitors</topic><topic>Coils (windings)</topic><topic>coupled-inductor</topic><topic>current ripple reduction</topic><topic>Distributed generation</topic><topic>dual mode</topic><topic>Electric potential</topic><topic>Electrochemical machining</topic><topic>electrolytic capacitor</topic><topic>Energy conversion efficiency</topic><topic>Fuel cells</topic><topic>Harmonic distortion</topic><topic>Inductance</topic><topic>Inductors</topic><topic>Inverters</topic><topic>Microinverter</topic><topic>Renewable energy</topic><topic>Renewable resources</topic><topic>Ripples</topic><topic>Switches</topic><topic>Thin films</topic><topic>Time sharing</topic><topic>Topology</topic><topic>Transformers</topic><topic>Voltage</topic><topic>Waveforms</topic><topic>Winding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alhuwaishel, Fahad M.</creatorcontrib><creatorcontrib>Ahmed, Nabil A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alhuwaishel, Fahad M.</au><au>Ahmed, Nabil A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled Inductor based Boost Microinverter with Dual Mode Time Sharing Operation for Renewable Energy Applications</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Household power conversion stages process significant amounts of power when they add up to form a microgrid. Microinverters are considered one of the best choices to utilize the renewable energy harvested power. Microinverter integration encounters several challenges when interfaced with expanding microgrids. This paper proposes a coupled inductor-based boost microinverter operating in dual mode time sharing technique for renewable energy applications. It is composed of an absolute sinewave modulated voltage boost converter and series capacitor connected to the secondary winding of the coupled inductor followed by a single-phase Full bridge inverter. The coupled inductor integration allows a significant reduction in current ripple and improved energy conversion efficiency. In the proposed microinverter, the DC link voltage is not required to be constant, instead, it process an absolute sinewave modulated voltage and then it is unfolded to AC and fed into the grid. The DC link capacitor is substituted by an efficient AC thin film type capacitor. The dual mode time-sharing principle intends to reduce the switching losses of the microinverter and consequently achieves high conversion efficiency. The proposed converter's analysis, design, and simulation are validated on a 2.0 kW setup system using PSIM simulation software. The feasibility and performance of this new microinverter topology is proved experimentally via laboratory prototype.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3405808</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3256-7955</orcidid><orcidid>https://orcid.org/0000-0003-4319-3343</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024-01, Vol.12, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2024_3405808 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | boost converter Capacitors Coils (windings) coupled-inductor current ripple reduction Distributed generation dual mode Electric potential Electrochemical machining electrolytic capacitor Energy conversion efficiency Fuel cells Harmonic distortion Inductance Inductors Inverters Microinverter Renewable energy Renewable resources Ripples Switches Thin films Time sharing Topology Transformers Voltage Waveforms Winding |
title | Coupled Inductor based Boost Microinverter with Dual Mode Time Sharing Operation for Renewable Energy Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A53%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20Inductor%20based%20Boost%20Microinverter%20with%20Dual%20Mode%20Time%20Sharing%20Operation%20for%20Renewable%20Energy%20Applications&rft.jtitle=IEEE%20access&rft.au=Alhuwaishel,%20Fahad%20M.&rft.date=2024-01-01&rft.volume=12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3405808&rft_dat=%3Cproquest_cross%3E3062738187%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3062738187&rft_id=info:pmid/&rft_ieee_id=10539363&rft_doaj_id=oai_doaj_org_article_24b69122251a4d17ba1dfefa01d2b894&rfr_iscdi=true |