Coupled Inductor based Boost Microinverter with Dual Mode Time Sharing Operation for Renewable Energy Applications

Household power conversion stages process significant amounts of power when they add up to form a microgrid. Microinverters are considered one of the best choices to utilize the renewable energy harvested power. Microinverter integration encounters several challenges when interfaced with expanding m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024-01, Vol.12, p.1-1
Hauptverfasser: Alhuwaishel, Fahad M., Ahmed, Nabil A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 12
creator Alhuwaishel, Fahad M.
Ahmed, Nabil A.
description Household power conversion stages process significant amounts of power when they add up to form a microgrid. Microinverters are considered one of the best choices to utilize the renewable energy harvested power. Microinverter integration encounters several challenges when interfaced with expanding microgrids. This paper proposes a coupled inductor-based boost microinverter operating in dual mode time sharing technique for renewable energy applications. It is composed of an absolute sinewave modulated voltage boost converter and series capacitor connected to the secondary winding of the coupled inductor followed by a single-phase Full bridge inverter. The coupled inductor integration allows a significant reduction in current ripple and improved energy conversion efficiency. In the proposed microinverter, the DC link voltage is not required to be constant, instead, it process an absolute sinewave modulated voltage and then it is unfolded to AC and fed into the grid. The DC link capacitor is substituted by an efficient AC thin film type capacitor. The dual mode time-sharing principle intends to reduce the switching losses of the microinverter and consequently achieves high conversion efficiency. The proposed converter's analysis, design, and simulation are validated on a 2.0 kW setup system using PSIM simulation software. The feasibility and performance of this new microinverter topology is proved experimentally via laboratory prototype.
doi_str_mv 10.1109/ACCESS.2024.3405808
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3405808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10539363</ieee_id><doaj_id>oai_doaj_org_article_24b69122251a4d17ba1dfefa01d2b894</doaj_id><sourcerecordid>3062738187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-dfad3e49a9f7c64853f7617f4cc0d5f3d576cdd02bd6e794bd05218a61b3779d3</originalsourceid><addsrcrecordid>eNpNUU1P3DAQjVCRiii_oD1Y4ryLvx0ft-m2rARCYunZcuLx4lWIUzsp4t_XEFQxl_nQe29G86rqK8FrQrC-2jTNdr9fU0z5mnEsalyfVGeUSL1igslPH-rP1UXOR1yiLiOhzqrUxHnswaHd4OZuigm1Npf2e4x5QrehSzEMfyFNkNBzmB7Rj9n26DY6QA_hCdD-0aYwHNDdCMlOIQ7IF417GODZtj2g7QDp8II249iH7g2Qv1Sn3vYZLt7zefX75_ahuV7d3P3aNZubVUdrPa2ct44B11Z71UleC-aVJMrzrsNOeOaEkp1zmLZOgtK8dVhQUltJWqaUduy82i26LtqjGVN4sunFRBvM2yCmg7FpCl0PhvJWakIpFcRyR1RrifPgLSaOtrXmRety0RpT_DNDnswxzmko5xuGJVWsJrUqKLagytdyTuD_byXYvHplFq_Mq1fm3avC-rawAgB8YAimmWTsH7w6kPk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062738187</pqid></control><display><type>article</type><title>Coupled Inductor based Boost Microinverter with Dual Mode Time Sharing Operation for Renewable Energy Applications</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Alhuwaishel, Fahad M. ; Ahmed, Nabil A.</creator><creatorcontrib>Alhuwaishel, Fahad M. ; Ahmed, Nabil A.</creatorcontrib><description>Household power conversion stages process significant amounts of power when they add up to form a microgrid. Microinverters are considered one of the best choices to utilize the renewable energy harvested power. Microinverter integration encounters several challenges when interfaced with expanding microgrids. This paper proposes a coupled inductor-based boost microinverter operating in dual mode time sharing technique for renewable energy applications. It is composed of an absolute sinewave modulated voltage boost converter and series capacitor connected to the secondary winding of the coupled inductor followed by a single-phase Full bridge inverter. The coupled inductor integration allows a significant reduction in current ripple and improved energy conversion efficiency. In the proposed microinverter, the DC link voltage is not required to be constant, instead, it process an absolute sinewave modulated voltage and then it is unfolded to AC and fed into the grid. The DC link capacitor is substituted by an efficient AC thin film type capacitor. The dual mode time-sharing principle intends to reduce the switching losses of the microinverter and consequently achieves high conversion efficiency. The proposed converter's analysis, design, and simulation are validated on a 2.0 kW setup system using PSIM simulation software. The feasibility and performance of this new microinverter topology is proved experimentally via laboratory prototype.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3405808</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>boost converter ; Capacitors ; Coils (windings) ; coupled-inductor ; current ripple reduction ; Distributed generation ; dual mode ; Electric potential ; Electrochemical machining ; electrolytic capacitor ; Energy conversion efficiency ; Fuel cells ; Harmonic distortion ; Inductance ; Inductors ; Inverters ; Microinverter ; Renewable energy ; Renewable resources ; Ripples ; Switches ; Thin films ; Time sharing ; Topology ; Transformers ; Voltage ; Waveforms ; Winding</subject><ispartof>IEEE access, 2024-01, Vol.12, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-dfad3e49a9f7c64853f7617f4cc0d5f3d576cdd02bd6e794bd05218a61b3779d3</cites><orcidid>0000-0002-3256-7955 ; 0000-0003-4319-3343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10539363$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Alhuwaishel, Fahad M.</creatorcontrib><creatorcontrib>Ahmed, Nabil A.</creatorcontrib><title>Coupled Inductor based Boost Microinverter with Dual Mode Time Sharing Operation for Renewable Energy Applications</title><title>IEEE access</title><addtitle>Access</addtitle><description>Household power conversion stages process significant amounts of power when they add up to form a microgrid. Microinverters are considered one of the best choices to utilize the renewable energy harvested power. Microinverter integration encounters several challenges when interfaced with expanding microgrids. This paper proposes a coupled inductor-based boost microinverter operating in dual mode time sharing technique for renewable energy applications. It is composed of an absolute sinewave modulated voltage boost converter and series capacitor connected to the secondary winding of the coupled inductor followed by a single-phase Full bridge inverter. The coupled inductor integration allows a significant reduction in current ripple and improved energy conversion efficiency. In the proposed microinverter, the DC link voltage is not required to be constant, instead, it process an absolute sinewave modulated voltage and then it is unfolded to AC and fed into the grid. The DC link capacitor is substituted by an efficient AC thin film type capacitor. The dual mode time-sharing principle intends to reduce the switching losses of the microinverter and consequently achieves high conversion efficiency. The proposed converter's analysis, design, and simulation are validated on a 2.0 kW setup system using PSIM simulation software. The feasibility and performance of this new microinverter topology is proved experimentally via laboratory prototype.</description><subject>boost converter</subject><subject>Capacitors</subject><subject>Coils (windings)</subject><subject>coupled-inductor</subject><subject>current ripple reduction</subject><subject>Distributed generation</subject><subject>dual mode</subject><subject>Electric potential</subject><subject>Electrochemical machining</subject><subject>electrolytic capacitor</subject><subject>Energy conversion efficiency</subject><subject>Fuel cells</subject><subject>Harmonic distortion</subject><subject>Inductance</subject><subject>Inductors</subject><subject>Inverters</subject><subject>Microinverter</subject><subject>Renewable energy</subject><subject>Renewable resources</subject><subject>Ripples</subject><subject>Switches</subject><subject>Thin films</subject><subject>Time sharing</subject><subject>Topology</subject><subject>Transformers</subject><subject>Voltage</subject><subject>Waveforms</subject><subject>Winding</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1P3DAQjVCRiii_oD1Y4ryLvx0ft-m2rARCYunZcuLx4lWIUzsp4t_XEFQxl_nQe29G86rqK8FrQrC-2jTNdr9fU0z5mnEsalyfVGeUSL1igslPH-rP1UXOR1yiLiOhzqrUxHnswaHd4OZuigm1Npf2e4x5QrehSzEMfyFNkNBzmB7Rj9n26DY6QA_hCdD-0aYwHNDdCMlOIQ7IF417GODZtj2g7QDp8II249iH7g2Qv1Sn3vYZLt7zefX75_ahuV7d3P3aNZubVUdrPa2ct44B11Z71UleC-aVJMrzrsNOeOaEkp1zmLZOgtK8dVhQUltJWqaUduy82i26LtqjGVN4sunFRBvM2yCmg7FpCl0PhvJWakIpFcRyR1RrifPgLSaOtrXmRety0RpT_DNDnswxzmko5xuGJVWsJrUqKLagytdyTuD_byXYvHplFq_Mq1fm3avC-rawAgB8YAimmWTsH7w6kPk</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Alhuwaishel, Fahad M.</creator><creator>Ahmed, Nabil A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3256-7955</orcidid><orcidid>https://orcid.org/0000-0003-4319-3343</orcidid></search><sort><creationdate>20240101</creationdate><title>Coupled Inductor based Boost Microinverter with Dual Mode Time Sharing Operation for Renewable Energy Applications</title><author>Alhuwaishel, Fahad M. ; Ahmed, Nabil A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-dfad3e49a9f7c64853f7617f4cc0d5f3d576cdd02bd6e794bd05218a61b3779d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>boost converter</topic><topic>Capacitors</topic><topic>Coils (windings)</topic><topic>coupled-inductor</topic><topic>current ripple reduction</topic><topic>Distributed generation</topic><topic>dual mode</topic><topic>Electric potential</topic><topic>Electrochemical machining</topic><topic>electrolytic capacitor</topic><topic>Energy conversion efficiency</topic><topic>Fuel cells</topic><topic>Harmonic distortion</topic><topic>Inductance</topic><topic>Inductors</topic><topic>Inverters</topic><topic>Microinverter</topic><topic>Renewable energy</topic><topic>Renewable resources</topic><topic>Ripples</topic><topic>Switches</topic><topic>Thin films</topic><topic>Time sharing</topic><topic>Topology</topic><topic>Transformers</topic><topic>Voltage</topic><topic>Waveforms</topic><topic>Winding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alhuwaishel, Fahad M.</creatorcontrib><creatorcontrib>Ahmed, Nabil A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alhuwaishel, Fahad M.</au><au>Ahmed, Nabil A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled Inductor based Boost Microinverter with Dual Mode Time Sharing Operation for Renewable Energy Applications</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Household power conversion stages process significant amounts of power when they add up to form a microgrid. Microinverters are considered one of the best choices to utilize the renewable energy harvested power. Microinverter integration encounters several challenges when interfaced with expanding microgrids. This paper proposes a coupled inductor-based boost microinverter operating in dual mode time sharing technique for renewable energy applications. It is composed of an absolute sinewave modulated voltage boost converter and series capacitor connected to the secondary winding of the coupled inductor followed by a single-phase Full bridge inverter. The coupled inductor integration allows a significant reduction in current ripple and improved energy conversion efficiency. In the proposed microinverter, the DC link voltage is not required to be constant, instead, it process an absolute sinewave modulated voltage and then it is unfolded to AC and fed into the grid. The DC link capacitor is substituted by an efficient AC thin film type capacitor. The dual mode time-sharing principle intends to reduce the switching losses of the microinverter and consequently achieves high conversion efficiency. The proposed converter's analysis, design, and simulation are validated on a 2.0 kW setup system using PSIM simulation software. The feasibility and performance of this new microinverter topology is proved experimentally via laboratory prototype.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3405808</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3256-7955</orcidid><orcidid>https://orcid.org/0000-0003-4319-3343</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024-01, Vol.12, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3405808
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects boost converter
Capacitors
Coils (windings)
coupled-inductor
current ripple reduction
Distributed generation
dual mode
Electric potential
Electrochemical machining
electrolytic capacitor
Energy conversion efficiency
Fuel cells
Harmonic distortion
Inductance
Inductors
Inverters
Microinverter
Renewable energy
Renewable resources
Ripples
Switches
Thin films
Time sharing
Topology
Transformers
Voltage
Waveforms
Winding
title Coupled Inductor based Boost Microinverter with Dual Mode Time Sharing Operation for Renewable Energy Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A53%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20Inductor%20based%20Boost%20Microinverter%20with%20Dual%20Mode%20Time%20Sharing%20Operation%20for%20Renewable%20Energy%20Applications&rft.jtitle=IEEE%20access&rft.au=Alhuwaishel,%20Fahad%20M.&rft.date=2024-01-01&rft.volume=12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3405808&rft_dat=%3Cproquest_cross%3E3062738187%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3062738187&rft_id=info:pmid/&rft_ieee_id=10539363&rft_doaj_id=oai_doaj_org_article_24b69122251a4d17ba1dfefa01d2b894&rfr_iscdi=true