Data-Driven Energy Management of an Electric Vehicle Charging Station Using Deep Reinforcement Learning
A charging station that integrates renewable energy sources is a promising solution to address the increasing demand for electric vehicle (EV) charging without expanding the distribution network. An efficient and flexible energy management strategy is essential for effectively integrating various en...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.65956-65966 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 65966 |
---|---|
container_issue | |
container_start_page | 65956 |
container_title | IEEE access |
container_volume | 12 |
creator | Asha Rani, G. S. Lal Priya, P. S. Jayan, Jino Satheesh, Rahul Kolhe, Mohan Lal |
description | A charging station that integrates renewable energy sources is a promising solution to address the increasing demand for electric vehicle (EV) charging without expanding the distribution network. An efficient and flexible energy management strategy is essential for effectively integrating various energy sources and EVs. This research work aims to develop an Energy Management System (EMS) for an EV charging station (EVCS) that minimizes the operating cost of the EVCS operator while meeting the energy demands of connected EVs. The proposed approach employs a model-free method leveraging Deep Reinforcement Learning (DRL) to identify optimal schedules of connected EVs in real time. A Markov Decision Process (MDP) model is constructed from the perspective of the EVCS operator. The real-world scenarios are formulated by considering the stochastic nature of renewable energy and the commuting behavior of EVs. Various DRL algorithms for addressing MDPs are examined, and their performances are empirically compared. Notably, the Truncated Quantile Critics (TQC) algorithm emerges as the superior choice, yielding enhanced model performance. The simulation findings show that the proposed EMS can offer an enhanced control strategy, reducing the charging cost for EVCS operators compared to other benchmark methods. |
doi_str_mv | 10.1109/ACCESS.2024.3398059 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3398059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10522634</ieee_id><doaj_id>oai_doaj_org_article_3f2fa501423f404ea980ea360f1fada7</doaj_id><sourcerecordid>3055168847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-125b73c8146a9a486749e15754a80ff509c518e51ca313aa86821e9f1437b3cf3</originalsourceid><addsrcrecordid>eNpNUcFO3DAQjapWAlG-oBws9ZzF9tiJfUTZbUHaqlK39GoNZhy8WuytEyrx9yQEVfgynud5b2b8quqL4CshuL286rrNbreSXKoVgDVc2w_VqRSNrUFD8_Hd_aQ6H4Y9n46ZIN2eVv0aR6zXJf6jxDaJSv_MfmDCnh4pjSwHhhN-ID-W6Nkfeoj-QKx7wNLH1LPdiGPMid0Oc7YmOrJfFFPIxS8CW8KSprfP1aeAh4HO3-JZdftt87u7rrc_v990V9vag7ZjLaS-a8EboRq0qEzTKktCt1qh4SFobr0WhrTwCAIQTWOkIBuEgvYOfICz6mbRvc-4d8cSH7E8u4zRvQK59A7LOC_hIMiAmgslISiuCKevI4SGBxHwHttJ6-uidSz57xMNo9vnp5Km8R1wrUVjjJqrYKnyJQ9DofC_q-BuNsgtBrnZIPdm0MS6WFiRiN4xtJQNKHgBZzKLGA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055168847</pqid></control><display><type>article</type><title>Data-Driven Energy Management of an Electric Vehicle Charging Station Using Deep Reinforcement Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Asha Rani, G. S. ; Lal Priya, P. S. ; Jayan, Jino ; Satheesh, Rahul ; Kolhe, Mohan Lal</creator><creatorcontrib>Asha Rani, G. S. ; Lal Priya, P. S. ; Jayan, Jino ; Satheesh, Rahul ; Kolhe, Mohan Lal</creatorcontrib><description>A charging station that integrates renewable energy sources is a promising solution to address the increasing demand for electric vehicle (EV) charging without expanding the distribution network. An efficient and flexible energy management strategy is essential for effectively integrating various energy sources and EVs. This research work aims to develop an Energy Management System (EMS) for an EV charging station (EVCS) that minimizes the operating cost of the EVCS operator while meeting the energy demands of connected EVs. The proposed approach employs a model-free method leveraging Deep Reinforcement Learning (DRL) to identify optimal schedules of connected EVs in real time. A Markov Decision Process (MDP) model is constructed from the perspective of the EVCS operator. The real-world scenarios are formulated by considering the stochastic nature of renewable energy and the commuting behavior of EVs. Various DRL algorithms for addressing MDPs are examined, and their performances are empirically compared. Notably, the Truncated Quantile Critics (TQC) algorithm emerges as the superior choice, yielding enhanced model performance. The simulation findings show that the proposed EMS can offer an enhanced control strategy, reducing the charging cost for EVCS operators compared to other benchmark methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3398059</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Alternative energy sources ; Charging stations ; Costs ; Decision making ; Deep learning ; Deep reinforcement learning ; electric vehicle ; Electric vehicle charging ; Electric vehicle charging stations ; Electric vehicles ; Energy management ; energy management strategy ; Energy resources ; Markov decision process ; Markov processes ; Operating costs ; renewable energy ; Renewable energy sources ; Renewable resources ; truncated quantile critics ; Uncertainty</subject><ispartof>IEEE access, 2024, Vol.12, p.65956-65966</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-125b73c8146a9a486749e15754a80ff509c518e51ca313aa86821e9f1437b3cf3</cites><orcidid>0009-0001-4836-3391 ; 0000-0001-7547-9413 ; 0009-0003-9578-1945 ; 0000-0002-6004-9784</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10522634$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Asha Rani, G. S.</creatorcontrib><creatorcontrib>Lal Priya, P. S.</creatorcontrib><creatorcontrib>Jayan, Jino</creatorcontrib><creatorcontrib>Satheesh, Rahul</creatorcontrib><creatorcontrib>Kolhe, Mohan Lal</creatorcontrib><title>Data-Driven Energy Management of an Electric Vehicle Charging Station Using Deep Reinforcement Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>A charging station that integrates renewable energy sources is a promising solution to address the increasing demand for electric vehicle (EV) charging without expanding the distribution network. An efficient and flexible energy management strategy is essential for effectively integrating various energy sources and EVs. This research work aims to develop an Energy Management System (EMS) for an EV charging station (EVCS) that minimizes the operating cost of the EVCS operator while meeting the energy demands of connected EVs. The proposed approach employs a model-free method leveraging Deep Reinforcement Learning (DRL) to identify optimal schedules of connected EVs in real time. A Markov Decision Process (MDP) model is constructed from the perspective of the EVCS operator. The real-world scenarios are formulated by considering the stochastic nature of renewable energy and the commuting behavior of EVs. Various DRL algorithms for addressing MDPs are examined, and their performances are empirically compared. Notably, the Truncated Quantile Critics (TQC) algorithm emerges as the superior choice, yielding enhanced model performance. The simulation findings show that the proposed EMS can offer an enhanced control strategy, reducing the charging cost for EVCS operators compared to other benchmark methods.</description><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Charging stations</subject><subject>Costs</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Deep reinforcement learning</subject><subject>electric vehicle</subject><subject>Electric vehicle charging</subject><subject>Electric vehicle charging stations</subject><subject>Electric vehicles</subject><subject>Energy management</subject><subject>energy management strategy</subject><subject>Energy resources</subject><subject>Markov decision process</subject><subject>Markov processes</subject><subject>Operating costs</subject><subject>renewable energy</subject><subject>Renewable energy sources</subject><subject>Renewable resources</subject><subject>truncated quantile critics</subject><subject>Uncertainty</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFO3DAQjapWAlG-oBws9ZzF9tiJfUTZbUHaqlK39GoNZhy8WuytEyrx9yQEVfgynud5b2b8quqL4CshuL286rrNbreSXKoVgDVc2w_VqRSNrUFD8_Hd_aQ6H4Y9n46ZIN2eVv0aR6zXJf6jxDaJSv_MfmDCnh4pjSwHhhN-ID-W6Nkfeoj-QKx7wNLH1LPdiGPMid0Oc7YmOrJfFFPIxS8CW8KSprfP1aeAh4HO3-JZdftt87u7rrc_v990V9vag7ZjLaS-a8EboRq0qEzTKktCt1qh4SFobr0WhrTwCAIQTWOkIBuEgvYOfICz6mbRvc-4d8cSH7E8u4zRvQK59A7LOC_hIMiAmgslISiuCKevI4SGBxHwHttJ6-uidSz57xMNo9vnp5Km8R1wrUVjjJqrYKnyJQ9DofC_q-BuNsgtBrnZIPdm0MS6WFiRiN4xtJQNKHgBZzKLGA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Asha Rani, G. S.</creator><creator>Lal Priya, P. S.</creator><creator>Jayan, Jino</creator><creator>Satheesh, Rahul</creator><creator>Kolhe, Mohan Lal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0001-4836-3391</orcidid><orcidid>https://orcid.org/0000-0001-7547-9413</orcidid><orcidid>https://orcid.org/0009-0003-9578-1945</orcidid><orcidid>https://orcid.org/0000-0002-6004-9784</orcidid></search><sort><creationdate>2024</creationdate><title>Data-Driven Energy Management of an Electric Vehicle Charging Station Using Deep Reinforcement Learning</title><author>Asha Rani, G. S. ; Lal Priya, P. S. ; Jayan, Jino ; Satheesh, Rahul ; Kolhe, Mohan Lal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-125b73c8146a9a486749e15754a80ff509c518e51ca313aa86821e9f1437b3cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Charging stations</topic><topic>Costs</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Deep reinforcement learning</topic><topic>electric vehicle</topic><topic>Electric vehicle charging</topic><topic>Electric vehicle charging stations</topic><topic>Electric vehicles</topic><topic>Energy management</topic><topic>energy management strategy</topic><topic>Energy resources</topic><topic>Markov decision process</topic><topic>Markov processes</topic><topic>Operating costs</topic><topic>renewable energy</topic><topic>Renewable energy sources</topic><topic>Renewable resources</topic><topic>truncated quantile critics</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asha Rani, G. S.</creatorcontrib><creatorcontrib>Lal Priya, P. S.</creatorcontrib><creatorcontrib>Jayan, Jino</creatorcontrib><creatorcontrib>Satheesh, Rahul</creatorcontrib><creatorcontrib>Kolhe, Mohan Lal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asha Rani, G. S.</au><au>Lal Priya, P. S.</au><au>Jayan, Jino</au><au>Satheesh, Rahul</au><au>Kolhe, Mohan Lal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Energy Management of an Electric Vehicle Charging Station Using Deep Reinforcement Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>65956</spage><epage>65966</epage><pages>65956-65966</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>A charging station that integrates renewable energy sources is a promising solution to address the increasing demand for electric vehicle (EV) charging without expanding the distribution network. An efficient and flexible energy management strategy is essential for effectively integrating various energy sources and EVs. This research work aims to develop an Energy Management System (EMS) for an EV charging station (EVCS) that minimizes the operating cost of the EVCS operator while meeting the energy demands of connected EVs. The proposed approach employs a model-free method leveraging Deep Reinforcement Learning (DRL) to identify optimal schedules of connected EVs in real time. A Markov Decision Process (MDP) model is constructed from the perspective of the EVCS operator. The real-world scenarios are formulated by considering the stochastic nature of renewable energy and the commuting behavior of EVs. Various DRL algorithms for addressing MDPs are examined, and their performances are empirically compared. Notably, the Truncated Quantile Critics (TQC) algorithm emerges as the superior choice, yielding enhanced model performance. The simulation findings show that the proposed EMS can offer an enhanced control strategy, reducing the charging cost for EVCS operators compared to other benchmark methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3398059</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0001-4836-3391</orcidid><orcidid>https://orcid.org/0000-0001-7547-9413</orcidid><orcidid>https://orcid.org/0009-0003-9578-1945</orcidid><orcidid>https://orcid.org/0000-0002-6004-9784</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.65956-65966 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2024_3398059 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Alternative energy sources Charging stations Costs Decision making Deep learning Deep reinforcement learning electric vehicle Electric vehicle charging Electric vehicle charging stations Electric vehicles Energy management energy management strategy Energy resources Markov decision process Markov processes Operating costs renewable energy Renewable energy sources Renewable resources truncated quantile critics Uncertainty |
title | Data-Driven Energy Management of an Electric Vehicle Charging Station Using Deep Reinforcement Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A37%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Energy%20Management%20of%20an%20Electric%20Vehicle%20Charging%20Station%20Using%20Deep%20Reinforcement%20Learning&rft.jtitle=IEEE%20access&rft.au=Asha%20Rani,%20G.%20S.&rft.date=2024&rft.volume=12&rft.spage=65956&rft.epage=65966&rft.pages=65956-65966&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3398059&rft_dat=%3Cproquest_cross%3E3055168847%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055168847&rft_id=info:pmid/&rft_ieee_id=10522634&rft_doaj_id=oai_doaj_org_article_3f2fa501423f404ea980ea360f1fada7&rfr_iscdi=true |