Maximum Likelihood Estimation for an SAG Mill Model utilizing Physical Available Measurements

In this paper, we have proposed a new paradigm for modeling of SAG mills. Typically, important parameters found in the modeling of such processes are described as state-space system model rather than unknown parameters. Here, we propose to estimate the system model using the maximum likelihood appro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024-01, Vol.12, p.1-1
Hauptverfasser: Cedeno, Angel L., Coronel, Maria, Orellana, Rafael, Varas, Patricio, Carvajal, Rodrigo, Godoy, Boris I., Aguero, Juan C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we have proposed a new paradigm for modeling of SAG mills. Typically, important parameters found in the modeling of such processes are described as state-space system model rather than unknown parameters. Here, we propose to estimate the system model using the maximum likelihood approach. Additionally, we propose using a new measurement that has not been considered in other modeling approaches. The benefits of our proposal are illustrated via numerical simulations. The results demonstrate that incorporating this new measurement within the framework of maximum likelihood estimation improves the accuracy of estimating the unknown parameters.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2024.3393768