Bearing Fault Diagnosis Method Based on Attention Mechanism and Multi-Channel Feature Fusion

To address the problems of limited identification accuracy and poor generalization ability of bearing fault diagnosis models, a convolutional neural network model for bearing fault diagnosis based on convolutional block attention module and multi-channel feature fusion (CBAM-MFFCNN) is proposed. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.45011-45025
Hauptverfasser: Gao, Hongfeng, Ma, Jie, Zhang, Zhonghang, Cai, Chaozhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45025
container_issue
container_start_page 45011
container_title IEEE access
container_volume 12
creator Gao, Hongfeng
Ma, Jie
Zhang, Zhonghang
Cai, Chaozhi
description To address the problems of limited identification accuracy and poor generalization ability of bearing fault diagnosis models, a convolutional neural network model for bearing fault diagnosis based on convolutional block attention module and multi-channel feature fusion (CBAM-MFFCNN) is proposed. The method uses signal processing technology to convert one-dimensional vibration signal into three types of two-dimensional time-frequency images, and constructs a network with multi-channel input to learn the three types of images at the same time. To realize the accurate fault diagnosis of bearings in strong noise environment, the structural parameters of the network are optimized. By adding different degrees of Gaussian white noise to the vibration signal, the convolution kernel size and the step of the first layer of the model are optimized. In order to improve the feature extraction ability and generalization performance of the model, the variable load dataset is constructed for training and testing. Experiments are conducted based on the Case Western Reserve University (CWRU) bearing datasets, the experimental results show that compared with the single channel diagnosis model, CBAM-MFFCNN can not only realize accurate identification of bearing fault, but also achieve 100% identification accuracy in fault degree testing.
doi_str_mv 10.1109/ACCESS.2024.3381618
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3381618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10478912</ieee_id><doaj_id>oai_doaj_org_article_a56640654ccd434aaa62b53395b783e9</doaj_id><sourcerecordid>3015056213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-b403430b8e454b4c0b4cac6116aebade9f26cb2f55097c6af82659ce8d975ee23</originalsourceid><addsrcrecordid>eNpNUU1r3DAQNSWFhmR_QXsQ9Oytvm0dN062XcjSw7a3ghjL442WjZVK8iH_vkodQgaGeQzvvRl4VfWZ0TVj1HzbdN3d4bDmlMu1EC3TrP1QXXKmTS2U0Bfv8KdqldKJlio0o5rL6s8NQvTTkWxhPmdy6-E4heQT2WN-CAO5gYQDCRPZ5IxT9gXt0T3A5NMjgWkg-yLzdVc2E57JFiHPEcl2ToV6XX0c4Zxw9Tqvqt_bu1_dj_r-5_ddt7mvnaQm172kQgratyiV7KWjpcFpxjRgDwOakWvX81EpahqnYWy5VsZhO5hGIXJxVe0W3yHAyT5F_wjx2Qbw9v8ixKOFmL07owWltaRaSecGKSQAaN4rIYzqm1agKV5fF6-nGP7OmLI9hTlO5X0rKFNUac5EYYmF5WJIKeL4dpVR-5KKXVKxL6nY11SK6sui8oj4TiGb1jAu_gF9RIfb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3015056213</pqid></control><display><type>article</type><title>Bearing Fault Diagnosis Method Based on Attention Mechanism and Multi-Channel Feature Fusion</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Gao, Hongfeng ; Ma, Jie ; Zhang, Zhonghang ; Cai, Chaozhi</creator><creatorcontrib>Gao, Hongfeng ; Ma, Jie ; Zhang, Zhonghang ; Cai, Chaozhi</creatorcontrib><description>To address the problems of limited identification accuracy and poor generalization ability of bearing fault diagnosis models, a convolutional neural network model for bearing fault diagnosis based on convolutional block attention module and multi-channel feature fusion (CBAM-MFFCNN) is proposed. The method uses signal processing technology to convert one-dimensional vibration signal into three types of two-dimensional time-frequency images, and constructs a network with multi-channel input to learn the three types of images at the same time. To realize the accurate fault diagnosis of bearings in strong noise environment, the structural parameters of the network are optimized. By adding different degrees of Gaussian white noise to the vibration signal, the convolution kernel size and the step of the first layer of the model are optimized. In order to improve the feature extraction ability and generalization performance of the model, the variable load dataset is constructed for training and testing. Experiments are conducted based on the Case Western Reserve University (CWRU) bearing datasets, the experimental results show that compared with the single channel diagnosis model, CBAM-MFFCNN can not only realize accurate identification of bearing fault, but also achieve 100% identification accuracy in fault degree testing.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3381618</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Artificial neural networks ; attention mechanism ; Bearing strength ; Colleges &amp; universities ; Convolution ; convolutional neural network ; Convolutional neural networks ; Datasets ; Fault diagnosis ; Feature extraction ; feature fusion ; Load modeling ; Rolling bearing ; Rolling bearings ; Signal processing ; Time-frequency analysis ; Vibration ; Vibrations ; White noise</subject><ispartof>IEEE access, 2024, Vol.12, p.45011-45025</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-b403430b8e454b4c0b4cac6116aebade9f26cb2f55097c6af82659ce8d975ee23</citedby><cites>FETCH-LOGICAL-c409t-b403430b8e454b4c0b4cac6116aebade9f26cb2f55097c6af82659ce8d975ee23</cites><orcidid>0009-0006-1059-449X ; 0000-0001-8817-5232</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10478912$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Gao, Hongfeng</creatorcontrib><creatorcontrib>Ma, Jie</creatorcontrib><creatorcontrib>Zhang, Zhonghang</creatorcontrib><creatorcontrib>Cai, Chaozhi</creatorcontrib><title>Bearing Fault Diagnosis Method Based on Attention Mechanism and Multi-Channel Feature Fusion</title><title>IEEE access</title><addtitle>Access</addtitle><description>To address the problems of limited identification accuracy and poor generalization ability of bearing fault diagnosis models, a convolutional neural network model for bearing fault diagnosis based on convolutional block attention module and multi-channel feature fusion (CBAM-MFFCNN) is proposed. The method uses signal processing technology to convert one-dimensional vibration signal into three types of two-dimensional time-frequency images, and constructs a network with multi-channel input to learn the three types of images at the same time. To realize the accurate fault diagnosis of bearings in strong noise environment, the structural parameters of the network are optimized. By adding different degrees of Gaussian white noise to the vibration signal, the convolution kernel size and the step of the first layer of the model are optimized. In order to improve the feature extraction ability and generalization performance of the model, the variable load dataset is constructed for training and testing. Experiments are conducted based on the Case Western Reserve University (CWRU) bearing datasets, the experimental results show that compared with the single channel diagnosis model, CBAM-MFFCNN can not only realize accurate identification of bearing fault, but also achieve 100% identification accuracy in fault degree testing.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>attention mechanism</subject><subject>Bearing strength</subject><subject>Colleges &amp; universities</subject><subject>Convolution</subject><subject>convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Datasets</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>feature fusion</subject><subject>Load modeling</subject><subject>Rolling bearing</subject><subject>Rolling bearings</subject><subject>Signal processing</subject><subject>Time-frequency analysis</subject><subject>Vibration</subject><subject>Vibrations</subject><subject>White noise</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAQNSWFhmR_QXsQ9Oytvm0dN062XcjSw7a3ghjL442WjZVK8iH_vkodQgaGeQzvvRl4VfWZ0TVj1HzbdN3d4bDmlMu1EC3TrP1QXXKmTS2U0Bfv8KdqldKJlio0o5rL6s8NQvTTkWxhPmdy6-E4heQT2WN-CAO5gYQDCRPZ5IxT9gXt0T3A5NMjgWkg-yLzdVc2E57JFiHPEcl2ToV6XX0c4Zxw9Tqvqt_bu1_dj_r-5_ddt7mvnaQm172kQgratyiV7KWjpcFpxjRgDwOakWvX81EpahqnYWy5VsZhO5hGIXJxVe0W3yHAyT5F_wjx2Qbw9v8ixKOFmL07owWltaRaSecGKSQAaN4rIYzqm1agKV5fF6-nGP7OmLI9hTlO5X0rKFNUac5EYYmF5WJIKeL4dpVR-5KKXVKxL6nY11SK6sui8oj4TiGb1jAu_gF9RIfb</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Gao, Hongfeng</creator><creator>Ma, Jie</creator><creator>Zhang, Zhonghang</creator><creator>Cai, Chaozhi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0006-1059-449X</orcidid><orcidid>https://orcid.org/0000-0001-8817-5232</orcidid></search><sort><creationdate>2024</creationdate><title>Bearing Fault Diagnosis Method Based on Attention Mechanism and Multi-Channel Feature Fusion</title><author>Gao, Hongfeng ; Ma, Jie ; Zhang, Zhonghang ; Cai, Chaozhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-b403430b8e454b4c0b4cac6116aebade9f26cb2f55097c6af82659ce8d975ee23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>attention mechanism</topic><topic>Bearing strength</topic><topic>Colleges &amp; universities</topic><topic>Convolution</topic><topic>convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Datasets</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>feature fusion</topic><topic>Load modeling</topic><topic>Rolling bearing</topic><topic>Rolling bearings</topic><topic>Signal processing</topic><topic>Time-frequency analysis</topic><topic>Vibration</topic><topic>Vibrations</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Hongfeng</creatorcontrib><creatorcontrib>Ma, Jie</creatorcontrib><creatorcontrib>Zhang, Zhonghang</creatorcontrib><creatorcontrib>Cai, Chaozhi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Hongfeng</au><au>Ma, Jie</au><au>Zhang, Zhonghang</au><au>Cai, Chaozhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bearing Fault Diagnosis Method Based on Attention Mechanism and Multi-Channel Feature Fusion</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>45011</spage><epage>45025</epage><pages>45011-45025</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>To address the problems of limited identification accuracy and poor generalization ability of bearing fault diagnosis models, a convolutional neural network model for bearing fault diagnosis based on convolutional block attention module and multi-channel feature fusion (CBAM-MFFCNN) is proposed. The method uses signal processing technology to convert one-dimensional vibration signal into three types of two-dimensional time-frequency images, and constructs a network with multi-channel input to learn the three types of images at the same time. To realize the accurate fault diagnosis of bearings in strong noise environment, the structural parameters of the network are optimized. By adding different degrees of Gaussian white noise to the vibration signal, the convolution kernel size and the step of the first layer of the model are optimized. In order to improve the feature extraction ability and generalization performance of the model, the variable load dataset is constructed for training and testing. Experiments are conducted based on the Case Western Reserve University (CWRU) bearing datasets, the experimental results show that compared with the single channel diagnosis model, CBAM-MFFCNN can not only realize accurate identification of bearing fault, but also achieve 100% identification accuracy in fault degree testing.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3381618</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0006-1059-449X</orcidid><orcidid>https://orcid.org/0000-0001-8817-5232</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.45011-45025
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3381618
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Artificial neural networks
attention mechanism
Bearing strength
Colleges & universities
Convolution
convolutional neural network
Convolutional neural networks
Datasets
Fault diagnosis
Feature extraction
feature fusion
Load modeling
Rolling bearing
Rolling bearings
Signal processing
Time-frequency analysis
Vibration
Vibrations
White noise
title Bearing Fault Diagnosis Method Based on Attention Mechanism and Multi-Channel Feature Fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A09%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bearing%20Fault%20Diagnosis%20Method%20Based%20on%20Attention%20Mechanism%20and%20Multi-Channel%20Feature%20Fusion&rft.jtitle=IEEE%20access&rft.au=Gao,%20Hongfeng&rft.date=2024&rft.volume=12&rft.spage=45011&rft.epage=45025&rft.pages=45011-45025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3381618&rft_dat=%3Cproquest_cross%3E3015056213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3015056213&rft_id=info:pmid/&rft_ieee_id=10478912&rft_doaj_id=oai_doaj_org_article_a56640654ccd434aaa62b53395b783e9&rfr_iscdi=true