Bearing Fault Diagnosis Method Based on Attention Mechanism and Multi-Channel Feature Fusion
To address the problems of limited identification accuracy and poor generalization ability of bearing fault diagnosis models, a convolutional neural network model for bearing fault diagnosis based on convolutional block attention module and multi-channel feature fusion (CBAM-MFFCNN) is proposed. The...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.45011-45025 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 45025 |
---|---|
container_issue | |
container_start_page | 45011 |
container_title | IEEE access |
container_volume | 12 |
creator | Gao, Hongfeng Ma, Jie Zhang, Zhonghang Cai, Chaozhi |
description | To address the problems of limited identification accuracy and poor generalization ability of bearing fault diagnosis models, a convolutional neural network model for bearing fault diagnosis based on convolutional block attention module and multi-channel feature fusion (CBAM-MFFCNN) is proposed. The method uses signal processing technology to convert one-dimensional vibration signal into three types of two-dimensional time-frequency images, and constructs a network with multi-channel input to learn the three types of images at the same time. To realize the accurate fault diagnosis of bearings in strong noise environment, the structural parameters of the network are optimized. By adding different degrees of Gaussian white noise to the vibration signal, the convolution kernel size and the step of the first layer of the model are optimized. In order to improve the feature extraction ability and generalization performance of the model, the variable load dataset is constructed for training and testing. Experiments are conducted based on the Case Western Reserve University (CWRU) bearing datasets, the experimental results show that compared with the single channel diagnosis model, CBAM-MFFCNN can not only realize accurate identification of bearing fault, but also achieve 100% identification accuracy in fault degree testing. |
doi_str_mv | 10.1109/ACCESS.2024.3381618 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3381618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10478912</ieee_id><doaj_id>oai_doaj_org_article_a56640654ccd434aaa62b53395b783e9</doaj_id><sourcerecordid>3015056213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-b403430b8e454b4c0b4cac6116aebade9f26cb2f55097c6af82659ce8d975ee23</originalsourceid><addsrcrecordid>eNpNUU1r3DAQNSWFhmR_QXsQ9Oytvm0dN062XcjSw7a3ghjL442WjZVK8iH_vkodQgaGeQzvvRl4VfWZ0TVj1HzbdN3d4bDmlMu1EC3TrP1QXXKmTS2U0Bfv8KdqldKJlio0o5rL6s8NQvTTkWxhPmdy6-E4heQT2WN-CAO5gYQDCRPZ5IxT9gXt0T3A5NMjgWkg-yLzdVc2E57JFiHPEcl2ToV6XX0c4Zxw9Tqvqt_bu1_dj_r-5_ddt7mvnaQm172kQgratyiV7KWjpcFpxjRgDwOakWvX81EpahqnYWy5VsZhO5hGIXJxVe0W3yHAyT5F_wjx2Qbw9v8ixKOFmL07owWltaRaSecGKSQAaN4rIYzqm1agKV5fF6-nGP7OmLI9hTlO5X0rKFNUac5EYYmF5WJIKeL4dpVR-5KKXVKxL6nY11SK6sui8oj4TiGb1jAu_gF9RIfb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3015056213</pqid></control><display><type>article</type><title>Bearing Fault Diagnosis Method Based on Attention Mechanism and Multi-Channel Feature Fusion</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Gao, Hongfeng ; Ma, Jie ; Zhang, Zhonghang ; Cai, Chaozhi</creator><creatorcontrib>Gao, Hongfeng ; Ma, Jie ; Zhang, Zhonghang ; Cai, Chaozhi</creatorcontrib><description>To address the problems of limited identification accuracy and poor generalization ability of bearing fault diagnosis models, a convolutional neural network model for bearing fault diagnosis based on convolutional block attention module and multi-channel feature fusion (CBAM-MFFCNN) is proposed. The method uses signal processing technology to convert one-dimensional vibration signal into three types of two-dimensional time-frequency images, and constructs a network with multi-channel input to learn the three types of images at the same time. To realize the accurate fault diagnosis of bearings in strong noise environment, the structural parameters of the network are optimized. By adding different degrees of Gaussian white noise to the vibration signal, the convolution kernel size and the step of the first layer of the model are optimized. In order to improve the feature extraction ability and generalization performance of the model, the variable load dataset is constructed for training and testing. Experiments are conducted based on the Case Western Reserve University (CWRU) bearing datasets, the experimental results show that compared with the single channel diagnosis model, CBAM-MFFCNN can not only realize accurate identification of bearing fault, but also achieve 100% identification accuracy in fault degree testing.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3381618</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Artificial neural networks ; attention mechanism ; Bearing strength ; Colleges & universities ; Convolution ; convolutional neural network ; Convolutional neural networks ; Datasets ; Fault diagnosis ; Feature extraction ; feature fusion ; Load modeling ; Rolling bearing ; Rolling bearings ; Signal processing ; Time-frequency analysis ; Vibration ; Vibrations ; White noise</subject><ispartof>IEEE access, 2024, Vol.12, p.45011-45025</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-b403430b8e454b4c0b4cac6116aebade9f26cb2f55097c6af82659ce8d975ee23</citedby><cites>FETCH-LOGICAL-c409t-b403430b8e454b4c0b4cac6116aebade9f26cb2f55097c6af82659ce8d975ee23</cites><orcidid>0009-0006-1059-449X ; 0000-0001-8817-5232</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10478912$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Gao, Hongfeng</creatorcontrib><creatorcontrib>Ma, Jie</creatorcontrib><creatorcontrib>Zhang, Zhonghang</creatorcontrib><creatorcontrib>Cai, Chaozhi</creatorcontrib><title>Bearing Fault Diagnosis Method Based on Attention Mechanism and Multi-Channel Feature Fusion</title><title>IEEE access</title><addtitle>Access</addtitle><description>To address the problems of limited identification accuracy and poor generalization ability of bearing fault diagnosis models, a convolutional neural network model for bearing fault diagnosis based on convolutional block attention module and multi-channel feature fusion (CBAM-MFFCNN) is proposed. The method uses signal processing technology to convert one-dimensional vibration signal into three types of two-dimensional time-frequency images, and constructs a network with multi-channel input to learn the three types of images at the same time. To realize the accurate fault diagnosis of bearings in strong noise environment, the structural parameters of the network are optimized. By adding different degrees of Gaussian white noise to the vibration signal, the convolution kernel size and the step of the first layer of the model are optimized. In order to improve the feature extraction ability and generalization performance of the model, the variable load dataset is constructed for training and testing. Experiments are conducted based on the Case Western Reserve University (CWRU) bearing datasets, the experimental results show that compared with the single channel diagnosis model, CBAM-MFFCNN can not only realize accurate identification of bearing fault, but also achieve 100% identification accuracy in fault degree testing.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>attention mechanism</subject><subject>Bearing strength</subject><subject>Colleges & universities</subject><subject>Convolution</subject><subject>convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Datasets</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>feature fusion</subject><subject>Load modeling</subject><subject>Rolling bearing</subject><subject>Rolling bearings</subject><subject>Signal processing</subject><subject>Time-frequency analysis</subject><subject>Vibration</subject><subject>Vibrations</subject><subject>White noise</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAQNSWFhmR_QXsQ9Oytvm0dN062XcjSw7a3ghjL442WjZVK8iH_vkodQgaGeQzvvRl4VfWZ0TVj1HzbdN3d4bDmlMu1EC3TrP1QXXKmTS2U0Bfv8KdqldKJlio0o5rL6s8NQvTTkWxhPmdy6-E4heQT2WN-CAO5gYQDCRPZ5IxT9gXt0T3A5NMjgWkg-yLzdVc2E57JFiHPEcl2ToV6XX0c4Zxw9Tqvqt_bu1_dj_r-5_ddt7mvnaQm172kQgratyiV7KWjpcFpxjRgDwOakWvX81EpahqnYWy5VsZhO5hGIXJxVe0W3yHAyT5F_wjx2Qbw9v8ixKOFmL07owWltaRaSecGKSQAaN4rIYzqm1agKV5fF6-nGP7OmLI9hTlO5X0rKFNUac5EYYmF5WJIKeL4dpVR-5KKXVKxL6nY11SK6sui8oj4TiGb1jAu_gF9RIfb</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Gao, Hongfeng</creator><creator>Ma, Jie</creator><creator>Zhang, Zhonghang</creator><creator>Cai, Chaozhi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0006-1059-449X</orcidid><orcidid>https://orcid.org/0000-0001-8817-5232</orcidid></search><sort><creationdate>2024</creationdate><title>Bearing Fault Diagnosis Method Based on Attention Mechanism and Multi-Channel Feature Fusion</title><author>Gao, Hongfeng ; Ma, Jie ; Zhang, Zhonghang ; Cai, Chaozhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-b403430b8e454b4c0b4cac6116aebade9f26cb2f55097c6af82659ce8d975ee23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>attention mechanism</topic><topic>Bearing strength</topic><topic>Colleges & universities</topic><topic>Convolution</topic><topic>convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Datasets</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>feature fusion</topic><topic>Load modeling</topic><topic>Rolling bearing</topic><topic>Rolling bearings</topic><topic>Signal processing</topic><topic>Time-frequency analysis</topic><topic>Vibration</topic><topic>Vibrations</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Hongfeng</creatorcontrib><creatorcontrib>Ma, Jie</creatorcontrib><creatorcontrib>Zhang, Zhonghang</creatorcontrib><creatorcontrib>Cai, Chaozhi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Hongfeng</au><au>Ma, Jie</au><au>Zhang, Zhonghang</au><au>Cai, Chaozhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bearing Fault Diagnosis Method Based on Attention Mechanism and Multi-Channel Feature Fusion</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>45011</spage><epage>45025</epage><pages>45011-45025</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>To address the problems of limited identification accuracy and poor generalization ability of bearing fault diagnosis models, a convolutional neural network model for bearing fault diagnosis based on convolutional block attention module and multi-channel feature fusion (CBAM-MFFCNN) is proposed. The method uses signal processing technology to convert one-dimensional vibration signal into three types of two-dimensional time-frequency images, and constructs a network with multi-channel input to learn the three types of images at the same time. To realize the accurate fault diagnosis of bearings in strong noise environment, the structural parameters of the network are optimized. By adding different degrees of Gaussian white noise to the vibration signal, the convolution kernel size and the step of the first layer of the model are optimized. In order to improve the feature extraction ability and generalization performance of the model, the variable load dataset is constructed for training and testing. Experiments are conducted based on the Case Western Reserve University (CWRU) bearing datasets, the experimental results show that compared with the single channel diagnosis model, CBAM-MFFCNN can not only realize accurate identification of bearing fault, but also achieve 100% identification accuracy in fault degree testing.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3381618</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0006-1059-449X</orcidid><orcidid>https://orcid.org/0000-0001-8817-5232</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.45011-45025 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2024_3381618 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Artificial neural networks attention mechanism Bearing strength Colleges & universities Convolution convolutional neural network Convolutional neural networks Datasets Fault diagnosis Feature extraction feature fusion Load modeling Rolling bearing Rolling bearings Signal processing Time-frequency analysis Vibration Vibrations White noise |
title | Bearing Fault Diagnosis Method Based on Attention Mechanism and Multi-Channel Feature Fusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A09%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bearing%20Fault%20Diagnosis%20Method%20Based%20on%20Attention%20Mechanism%20and%20Multi-Channel%20Feature%20Fusion&rft.jtitle=IEEE%20access&rft.au=Gao,%20Hongfeng&rft.date=2024&rft.volume=12&rft.spage=45011&rft.epage=45025&rft.pages=45011-45025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3381618&rft_dat=%3Cproquest_cross%3E3015056213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3015056213&rft_id=info:pmid/&rft_ieee_id=10478912&rft_doaj_id=oai_doaj_org_article_a56640654ccd434aaa62b53395b783e9&rfr_iscdi=true |