A Novel Web Framework for Cervical Cancer Detection System: A Machine Learning Breakthrough
Cervical cancer, the second most prevalent cancer among women worldwide, is primarily attributed to the human papillomavirus (HPV). Despite advances in healthcare, it remains a significant cause of mortality among women across diverse regions, surpassing other hereditary cancers. Early detection is...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.41542-41556 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 41556 |
---|---|
container_issue | |
container_start_page | 41542 |
container_title | IEEE access |
container_volume | 12 |
creator | Qathrady, Mimonah Al Shaf, Ahmad Ali, Tariq Farooq, Umar Rehman, Aqib Alqhtani, Samar M. Alshehri, Mohammed S. Almakdi, Sultan Irfan, Muhammad Rahman, Saifur Bade Eljak, Ladon Ahmed |
description | Cervical cancer, the second most prevalent cancer among women worldwide, is primarily attributed to the human papillomavirus (HPV). Despite advances in healthcare, it remains a significant cause of mortality among women across diverse regions, surpassing other hereditary cancers. Early detection is pivotal, as survival rates exceed 90% when the disease is identified in its early stages. In response to this critical need, we introduce WFC2DS (Web Framework for Cervical Cancer Detection System), a novel expert web system specifically designed to revolutionize cervical cancer diagnosis. WFC2DS integrates a sophisticated ensemble of machine learning classification algorithms, including Artificial Neural Network (ANN), AdaBoost, K-Nearest Neighbor (KNN), Random Forest Classifier (RFC), Support Vector Machine (SVM), and Decision Tree (DT). This ensemble approach enables a comprehensive analysis of a large dataset comprising information from 858 patients with 36 attributes, with the primary objective being the early detection of cervical cancer, using the last attribute, Biopsy, as the target variable. Our evaluation criteria encompass accuracy, specificity, sensitivity, and the F1 score. Among the algorithms, RFC and DT emerge as the most promising, demonstrating exceptional performance with an accuracy of 98.1% and an F1 score of 0.98. AdaBoost shows an accuracy of 97.4% and an F1 score of 0.98, ANN attains an accuracy of 97.7% and an F1 score of 0.96, SVM achieves an accuracy of 96.2% and an F1 score of 0.96, and KNN reaches an accuracy of 90.6% with an F1 score of 0.91. This research significantly contributes to reducing the global burden of cervical cancer, emphasizing transformative advancements in women's healthcare. WFC2DS, with its cutting-edge machine learning techniques, not only improves the accuracy of cervical cancer diagnosis but also enhances the overall healthcare landscape for women worldwide. |
doi_str_mv | 10.1109/ACCESS.2024.3377124 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3377124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10472052</ieee_id><doaj_id>oai_doaj_org_article_bc5cc69ea28146509acaf4d53a68811e</doaj_id><sourcerecordid>2995560706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-2c24d6af1ac7b86843c89b3254a61bd679d226b62997eeec72133bbcfad6de4d3</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIIOAL4GCJc4vfjrmVUB5SgUNBHDhYG2fTprQxOCmof09KEGIvuxrtzOxqkuSE0SFj1J6Psmw8nQ455XIohDGMy53kgDNtB0IJvftv3k-Om2ZBu0o7SJmD5HVEHsInLskL5uQ6wgq_QnwjZYgkw_hZeViSDGqPkVxhi76tQk2mm6bF1QUZkXvw86pGMkGIdVXPyGVEeGvnMaxn86Nkr4Rlg8e__TB5vh4_ZbeDyePNXTaaDLxQth1wz2WhoWTgTZ7qVAqf2lxwJUGzvNDGFpzrXHNrDSJ6w5kQee5LKHSBshCHyV2vWwRYuPdYrSBuXIDK_QAhzhzEtvJLdLlX3muLwFMmtaIWPJSyUAJ0mjKGndZZr_Uew8cam9YtwjrW3fmu81dKU0N1tyX6LR9D00Qs_1wZddtQXB-K24bifkPpWKc9q-re-MeQhlPFxTeMVIex</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2995560706</pqid></control><display><type>article</type><title>A Novel Web Framework for Cervical Cancer Detection System: A Machine Learning Breakthrough</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Qathrady, Mimonah Al ; Shaf, Ahmad ; Ali, Tariq ; Farooq, Umar ; Rehman, Aqib ; Alqhtani, Samar M. ; Alshehri, Mohammed S. ; Almakdi, Sultan ; Irfan, Muhammad ; Rahman, Saifur ; Bade Eljak, Ladon Ahmed</creator><creatorcontrib>Qathrady, Mimonah Al ; Shaf, Ahmad ; Ali, Tariq ; Farooq, Umar ; Rehman, Aqib ; Alqhtani, Samar M. ; Alshehri, Mohammed S. ; Almakdi, Sultan ; Irfan, Muhammad ; Rahman, Saifur ; Bade Eljak, Ladon Ahmed</creatorcontrib><description>Cervical cancer, the second most prevalent cancer among women worldwide, is primarily attributed to the human papillomavirus (HPV). Despite advances in healthcare, it remains a significant cause of mortality among women across diverse regions, surpassing other hereditary cancers. Early detection is pivotal, as survival rates exceed 90% when the disease is identified in its early stages. In response to this critical need, we introduce WFC2DS (Web Framework for Cervical Cancer Detection System), a novel expert web system specifically designed to revolutionize cervical cancer diagnosis. WFC2DS integrates a sophisticated ensemble of machine learning classification algorithms, including Artificial Neural Network (ANN), AdaBoost, K-Nearest Neighbor (KNN), Random Forest Classifier (RFC), Support Vector Machine (SVM), and Decision Tree (DT). This ensemble approach enables a comprehensive analysis of a large dataset comprising information from 858 patients with 36 attributes, with the primary objective being the early detection of cervical cancer, using the last attribute, Biopsy, as the target variable. Our evaluation criteria encompass accuracy, specificity, sensitivity, and the F1 score. Among the algorithms, RFC and DT emerge as the most promising, demonstrating exceptional performance with an accuracy of 98.1% and an F1 score of 0.98. AdaBoost shows an accuracy of 97.4% and an F1 score of 0.98, ANN attains an accuracy of 97.7% and an F1 score of 0.96, SVM achieves an accuracy of 96.2% and an F1 score of 0.96, and KNN reaches an accuracy of 90.6% with an F1 score of 0.91. This research significantly contributes to reducing the global burden of cervical cancer, emphasizing transformative advancements in women's healthcare. WFC2DS, with its cutting-edge machine learning techniques, not only improves the accuracy of cervical cancer diagnosis but also enhances the overall healthcare landscape for women worldwide.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3377124</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Artificial neural networks ; Biophysics ; Biopsy ; Cancer ; Cervical cancer ; cervical cancer detection ; Decision analysis ; Decision trees ; Detection algorithms ; Diagnosis ; Expert web framework ; gyne cancer diagnosis ; Health care ; Human papillomavirus ; Internet of Things ; Machine learning ; Medical diagnosis ; Support vector machines ; Web servers ; Web sites</subject><ispartof>IEEE access, 2024, Vol.12, p.41542-41556</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-2c24d6af1ac7b86843c89b3254a61bd679d226b62997eeec72133bbcfad6de4d3</cites><orcidid>0000-0003-2415-7304 ; 0000-0002-7262-183X ; 0000-0003-2445-0519 ; 0009-0009-5994-4288 ; 0000-0003-4161-6875 ; 0000-0001-9471-7720 ; 0000-0002-0633-5587 ; 0000-0002-8664-8953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10472052$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Qathrady, Mimonah Al</creatorcontrib><creatorcontrib>Shaf, Ahmad</creatorcontrib><creatorcontrib>Ali, Tariq</creatorcontrib><creatorcontrib>Farooq, Umar</creatorcontrib><creatorcontrib>Rehman, Aqib</creatorcontrib><creatorcontrib>Alqhtani, Samar M.</creatorcontrib><creatorcontrib>Alshehri, Mohammed S.</creatorcontrib><creatorcontrib>Almakdi, Sultan</creatorcontrib><creatorcontrib>Irfan, Muhammad</creatorcontrib><creatorcontrib>Rahman, Saifur</creatorcontrib><creatorcontrib>Bade Eljak, Ladon Ahmed</creatorcontrib><title>A Novel Web Framework for Cervical Cancer Detection System: A Machine Learning Breakthrough</title><title>IEEE access</title><addtitle>Access</addtitle><description>Cervical cancer, the second most prevalent cancer among women worldwide, is primarily attributed to the human papillomavirus (HPV). Despite advances in healthcare, it remains a significant cause of mortality among women across diverse regions, surpassing other hereditary cancers. Early detection is pivotal, as survival rates exceed 90% when the disease is identified in its early stages. In response to this critical need, we introduce WFC2DS (Web Framework for Cervical Cancer Detection System), a novel expert web system specifically designed to revolutionize cervical cancer diagnosis. WFC2DS integrates a sophisticated ensemble of machine learning classification algorithms, including Artificial Neural Network (ANN), AdaBoost, K-Nearest Neighbor (KNN), Random Forest Classifier (RFC), Support Vector Machine (SVM), and Decision Tree (DT). This ensemble approach enables a comprehensive analysis of a large dataset comprising information from 858 patients with 36 attributes, with the primary objective being the early detection of cervical cancer, using the last attribute, Biopsy, as the target variable. Our evaluation criteria encompass accuracy, specificity, sensitivity, and the F1 score. Among the algorithms, RFC and DT emerge as the most promising, demonstrating exceptional performance with an accuracy of 98.1% and an F1 score of 0.98. AdaBoost shows an accuracy of 97.4% and an F1 score of 0.98, ANN attains an accuracy of 97.7% and an F1 score of 0.96, SVM achieves an accuracy of 96.2% and an F1 score of 0.96, and KNN reaches an accuracy of 90.6% with an F1 score of 0.91. This research significantly contributes to reducing the global burden of cervical cancer, emphasizing transformative advancements in women's healthcare. WFC2DS, with its cutting-edge machine learning techniques, not only improves the accuracy of cervical cancer diagnosis but also enhances the overall healthcare landscape for women worldwide.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Biophysics</subject><subject>Biopsy</subject><subject>Cancer</subject><subject>Cervical cancer</subject><subject>cervical cancer detection</subject><subject>Decision analysis</subject><subject>Decision trees</subject><subject>Detection algorithms</subject><subject>Diagnosis</subject><subject>Expert web framework</subject><subject>gyne cancer diagnosis</subject><subject>Health care</subject><subject>Human papillomavirus</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Medical diagnosis</subject><subject>Support vector machines</subject><subject>Web servers</subject><subject>Web sites</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIIOAL4GCJc4vfjrmVUB5SgUNBHDhYG2fTprQxOCmof09KEGIvuxrtzOxqkuSE0SFj1J6Psmw8nQ455XIohDGMy53kgDNtB0IJvftv3k-Om2ZBu0o7SJmD5HVEHsInLskL5uQ6wgq_QnwjZYgkw_hZeViSDGqPkVxhi76tQk2mm6bF1QUZkXvw86pGMkGIdVXPyGVEeGvnMaxn86Nkr4Rlg8e__TB5vh4_ZbeDyePNXTaaDLxQth1wz2WhoWTgTZ7qVAqf2lxwJUGzvNDGFpzrXHNrDSJ6w5kQee5LKHSBshCHyV2vWwRYuPdYrSBuXIDK_QAhzhzEtvJLdLlX3muLwFMmtaIWPJSyUAJ0mjKGndZZr_Uew8cam9YtwjrW3fmu81dKU0N1tyX6LR9D00Qs_1wZddtQXB-K24bifkPpWKc9q-re-MeQhlPFxTeMVIex</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Qathrady, Mimonah Al</creator><creator>Shaf, Ahmad</creator><creator>Ali, Tariq</creator><creator>Farooq, Umar</creator><creator>Rehman, Aqib</creator><creator>Alqhtani, Samar M.</creator><creator>Alshehri, Mohammed S.</creator><creator>Almakdi, Sultan</creator><creator>Irfan, Muhammad</creator><creator>Rahman, Saifur</creator><creator>Bade Eljak, Ladon Ahmed</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2415-7304</orcidid><orcidid>https://orcid.org/0000-0002-7262-183X</orcidid><orcidid>https://orcid.org/0000-0003-2445-0519</orcidid><orcidid>https://orcid.org/0009-0009-5994-4288</orcidid><orcidid>https://orcid.org/0000-0003-4161-6875</orcidid><orcidid>https://orcid.org/0000-0001-9471-7720</orcidid><orcidid>https://orcid.org/0000-0002-0633-5587</orcidid><orcidid>https://orcid.org/0000-0002-8664-8953</orcidid></search><sort><creationdate>2024</creationdate><title>A Novel Web Framework for Cervical Cancer Detection System: A Machine Learning Breakthrough</title><author>Qathrady, Mimonah Al ; Shaf, Ahmad ; Ali, Tariq ; Farooq, Umar ; Rehman, Aqib ; Alqhtani, Samar M. ; Alshehri, Mohammed S. ; Almakdi, Sultan ; Irfan, Muhammad ; Rahman, Saifur ; Bade Eljak, Ladon Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-2c24d6af1ac7b86843c89b3254a61bd679d226b62997eeec72133bbcfad6de4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Biophysics</topic><topic>Biopsy</topic><topic>Cancer</topic><topic>Cervical cancer</topic><topic>cervical cancer detection</topic><topic>Decision analysis</topic><topic>Decision trees</topic><topic>Detection algorithms</topic><topic>Diagnosis</topic><topic>Expert web framework</topic><topic>gyne cancer diagnosis</topic><topic>Health care</topic><topic>Human papillomavirus</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Medical diagnosis</topic><topic>Support vector machines</topic><topic>Web servers</topic><topic>Web sites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qathrady, Mimonah Al</creatorcontrib><creatorcontrib>Shaf, Ahmad</creatorcontrib><creatorcontrib>Ali, Tariq</creatorcontrib><creatorcontrib>Farooq, Umar</creatorcontrib><creatorcontrib>Rehman, Aqib</creatorcontrib><creatorcontrib>Alqhtani, Samar M.</creatorcontrib><creatorcontrib>Alshehri, Mohammed S.</creatorcontrib><creatorcontrib>Almakdi, Sultan</creatorcontrib><creatorcontrib>Irfan, Muhammad</creatorcontrib><creatorcontrib>Rahman, Saifur</creatorcontrib><creatorcontrib>Bade Eljak, Ladon Ahmed</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qathrady, Mimonah Al</au><au>Shaf, Ahmad</au><au>Ali, Tariq</au><au>Farooq, Umar</au><au>Rehman, Aqib</au><au>Alqhtani, Samar M.</au><au>Alshehri, Mohammed S.</au><au>Almakdi, Sultan</au><au>Irfan, Muhammad</au><au>Rahman, Saifur</au><au>Bade Eljak, Ladon Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Web Framework for Cervical Cancer Detection System: A Machine Learning Breakthrough</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>41542</spage><epage>41556</epage><pages>41542-41556</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Cervical cancer, the second most prevalent cancer among women worldwide, is primarily attributed to the human papillomavirus (HPV). Despite advances in healthcare, it remains a significant cause of mortality among women across diverse regions, surpassing other hereditary cancers. Early detection is pivotal, as survival rates exceed 90% when the disease is identified in its early stages. In response to this critical need, we introduce WFC2DS (Web Framework for Cervical Cancer Detection System), a novel expert web system specifically designed to revolutionize cervical cancer diagnosis. WFC2DS integrates a sophisticated ensemble of machine learning classification algorithms, including Artificial Neural Network (ANN), AdaBoost, K-Nearest Neighbor (KNN), Random Forest Classifier (RFC), Support Vector Machine (SVM), and Decision Tree (DT). This ensemble approach enables a comprehensive analysis of a large dataset comprising information from 858 patients with 36 attributes, with the primary objective being the early detection of cervical cancer, using the last attribute, Biopsy, as the target variable. Our evaluation criteria encompass accuracy, specificity, sensitivity, and the F1 score. Among the algorithms, RFC and DT emerge as the most promising, demonstrating exceptional performance with an accuracy of 98.1% and an F1 score of 0.98. AdaBoost shows an accuracy of 97.4% and an F1 score of 0.98, ANN attains an accuracy of 97.7% and an F1 score of 0.96, SVM achieves an accuracy of 96.2% and an F1 score of 0.96, and KNN reaches an accuracy of 90.6% with an F1 score of 0.91. This research significantly contributes to reducing the global burden of cervical cancer, emphasizing transformative advancements in women's healthcare. WFC2DS, with its cutting-edge machine learning techniques, not only improves the accuracy of cervical cancer diagnosis but also enhances the overall healthcare landscape for women worldwide.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3377124</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2415-7304</orcidid><orcidid>https://orcid.org/0000-0002-7262-183X</orcidid><orcidid>https://orcid.org/0000-0003-2445-0519</orcidid><orcidid>https://orcid.org/0009-0009-5994-4288</orcidid><orcidid>https://orcid.org/0000-0003-4161-6875</orcidid><orcidid>https://orcid.org/0000-0001-9471-7720</orcidid><orcidid>https://orcid.org/0000-0002-0633-5587</orcidid><orcidid>https://orcid.org/0000-0002-8664-8953</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.41542-41556 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2024_3377124 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Algorithms Artificial neural networks Biophysics Biopsy Cancer Cervical cancer cervical cancer detection Decision analysis Decision trees Detection algorithms Diagnosis Expert web framework gyne cancer diagnosis Health care Human papillomavirus Internet of Things Machine learning Medical diagnosis Support vector machines Web servers Web sites |
title | A Novel Web Framework for Cervical Cancer Detection System: A Machine Learning Breakthrough |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A40%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Web%20Framework%20for%20Cervical%20Cancer%20Detection%20System:%20A%20Machine%20Learning%20Breakthrough&rft.jtitle=IEEE%20access&rft.au=Qathrady,%20Mimonah%20Al&rft.date=2024&rft.volume=12&rft.spage=41542&rft.epage=41556&rft.pages=41542-41556&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3377124&rft_dat=%3Cproquest_cross%3E2995560706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2995560706&rft_id=info:pmid/&rft_ieee_id=10472052&rft_doaj_id=oai_doaj_org_article_bc5cc69ea28146509acaf4d53a68811e&rfr_iscdi=true |