A Novel Web Framework for Cervical Cancer Detection System: A Machine Learning Breakthrough

Cervical cancer, the second most prevalent cancer among women worldwide, is primarily attributed to the human papillomavirus (HPV). Despite advances in healthcare, it remains a significant cause of mortality among women across diverse regions, surpassing other hereditary cancers. Early detection is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.41542-41556
Hauptverfasser: Qathrady, Mimonah Al, Shaf, Ahmad, Ali, Tariq, Farooq, Umar, Rehman, Aqib, Alqhtani, Samar M., Alshehri, Mohammed S., Almakdi, Sultan, Irfan, Muhammad, Rahman, Saifur, Bade Eljak, Ladon Ahmed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 41556
container_issue
container_start_page 41542
container_title IEEE access
container_volume 12
creator Qathrady, Mimonah Al
Shaf, Ahmad
Ali, Tariq
Farooq, Umar
Rehman, Aqib
Alqhtani, Samar M.
Alshehri, Mohammed S.
Almakdi, Sultan
Irfan, Muhammad
Rahman, Saifur
Bade Eljak, Ladon Ahmed
description Cervical cancer, the second most prevalent cancer among women worldwide, is primarily attributed to the human papillomavirus (HPV). Despite advances in healthcare, it remains a significant cause of mortality among women across diverse regions, surpassing other hereditary cancers. Early detection is pivotal, as survival rates exceed 90% when the disease is identified in its early stages. In response to this critical need, we introduce WFC2DS (Web Framework for Cervical Cancer Detection System), a novel expert web system specifically designed to revolutionize cervical cancer diagnosis. WFC2DS integrates a sophisticated ensemble of machine learning classification algorithms, including Artificial Neural Network (ANN), AdaBoost, K-Nearest Neighbor (KNN), Random Forest Classifier (RFC), Support Vector Machine (SVM), and Decision Tree (DT). This ensemble approach enables a comprehensive analysis of a large dataset comprising information from 858 patients with 36 attributes, with the primary objective being the early detection of cervical cancer, using the last attribute, Biopsy, as the target variable. Our evaluation criteria encompass accuracy, specificity, sensitivity, and the F1 score. Among the algorithms, RFC and DT emerge as the most promising, demonstrating exceptional performance with an accuracy of 98.1% and an F1 score of 0.98. AdaBoost shows an accuracy of 97.4% and an F1 score of 0.98, ANN attains an accuracy of 97.7% and an F1 score of 0.96, SVM achieves an accuracy of 96.2% and an F1 score of 0.96, and KNN reaches an accuracy of 90.6% with an F1 score of 0.91. This research significantly contributes to reducing the global burden of cervical cancer, emphasizing transformative advancements in women's healthcare. WFC2DS, with its cutting-edge machine learning techniques, not only improves the accuracy of cervical cancer diagnosis but also enhances the overall healthcare landscape for women worldwide.
doi_str_mv 10.1109/ACCESS.2024.3377124
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3377124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10472052</ieee_id><doaj_id>oai_doaj_org_article_bc5cc69ea28146509acaf4d53a68811e</doaj_id><sourcerecordid>2995560706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-2c24d6af1ac7b86843c89b3254a61bd679d226b62997eeec72133bbcfad6de4d3</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIIOAL4GCJc4vfjrmVUB5SgUNBHDhYG2fTprQxOCmof09KEGIvuxrtzOxqkuSE0SFj1J6Psmw8nQ455XIohDGMy53kgDNtB0IJvftv3k-Om2ZBu0o7SJmD5HVEHsInLskL5uQ6wgq_QnwjZYgkw_hZeViSDGqPkVxhi76tQk2mm6bF1QUZkXvw86pGMkGIdVXPyGVEeGvnMaxn86Nkr4Rlg8e__TB5vh4_ZbeDyePNXTaaDLxQth1wz2WhoWTgTZ7qVAqf2lxwJUGzvNDGFpzrXHNrDSJ6w5kQee5LKHSBshCHyV2vWwRYuPdYrSBuXIDK_QAhzhzEtvJLdLlX3muLwFMmtaIWPJSyUAJ0mjKGndZZr_Uew8cam9YtwjrW3fmu81dKU0N1tyX6LR9D00Qs_1wZddtQXB-K24bifkPpWKc9q-re-MeQhlPFxTeMVIex</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2995560706</pqid></control><display><type>article</type><title>A Novel Web Framework for Cervical Cancer Detection System: A Machine Learning Breakthrough</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Qathrady, Mimonah Al ; Shaf, Ahmad ; Ali, Tariq ; Farooq, Umar ; Rehman, Aqib ; Alqhtani, Samar M. ; Alshehri, Mohammed S. ; Almakdi, Sultan ; Irfan, Muhammad ; Rahman, Saifur ; Bade Eljak, Ladon Ahmed</creator><creatorcontrib>Qathrady, Mimonah Al ; Shaf, Ahmad ; Ali, Tariq ; Farooq, Umar ; Rehman, Aqib ; Alqhtani, Samar M. ; Alshehri, Mohammed S. ; Almakdi, Sultan ; Irfan, Muhammad ; Rahman, Saifur ; Bade Eljak, Ladon Ahmed</creatorcontrib><description>Cervical cancer, the second most prevalent cancer among women worldwide, is primarily attributed to the human papillomavirus (HPV). Despite advances in healthcare, it remains a significant cause of mortality among women across diverse regions, surpassing other hereditary cancers. Early detection is pivotal, as survival rates exceed 90% when the disease is identified in its early stages. In response to this critical need, we introduce WFC2DS (Web Framework for Cervical Cancer Detection System), a novel expert web system specifically designed to revolutionize cervical cancer diagnosis. WFC2DS integrates a sophisticated ensemble of machine learning classification algorithms, including Artificial Neural Network (ANN), AdaBoost, K-Nearest Neighbor (KNN), Random Forest Classifier (RFC), Support Vector Machine (SVM), and Decision Tree (DT). This ensemble approach enables a comprehensive analysis of a large dataset comprising information from 858 patients with 36 attributes, with the primary objective being the early detection of cervical cancer, using the last attribute, Biopsy, as the target variable. Our evaluation criteria encompass accuracy, specificity, sensitivity, and the F1 score. Among the algorithms, RFC and DT emerge as the most promising, demonstrating exceptional performance with an accuracy of 98.1% and an F1 score of 0.98. AdaBoost shows an accuracy of 97.4% and an F1 score of 0.98, ANN attains an accuracy of 97.7% and an F1 score of 0.96, SVM achieves an accuracy of 96.2% and an F1 score of 0.96, and KNN reaches an accuracy of 90.6% with an F1 score of 0.91. This research significantly contributes to reducing the global burden of cervical cancer, emphasizing transformative advancements in women's healthcare. WFC2DS, with its cutting-edge machine learning techniques, not only improves the accuracy of cervical cancer diagnosis but also enhances the overall healthcare landscape for women worldwide.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3377124</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Artificial neural networks ; Biophysics ; Biopsy ; Cancer ; Cervical cancer ; cervical cancer detection ; Decision analysis ; Decision trees ; Detection algorithms ; Diagnosis ; Expert web framework ; gyne cancer diagnosis ; Health care ; Human papillomavirus ; Internet of Things ; Machine learning ; Medical diagnosis ; Support vector machines ; Web servers ; Web sites</subject><ispartof>IEEE access, 2024, Vol.12, p.41542-41556</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-2c24d6af1ac7b86843c89b3254a61bd679d226b62997eeec72133bbcfad6de4d3</cites><orcidid>0000-0003-2415-7304 ; 0000-0002-7262-183X ; 0000-0003-2445-0519 ; 0009-0009-5994-4288 ; 0000-0003-4161-6875 ; 0000-0001-9471-7720 ; 0000-0002-0633-5587 ; 0000-0002-8664-8953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10472052$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Qathrady, Mimonah Al</creatorcontrib><creatorcontrib>Shaf, Ahmad</creatorcontrib><creatorcontrib>Ali, Tariq</creatorcontrib><creatorcontrib>Farooq, Umar</creatorcontrib><creatorcontrib>Rehman, Aqib</creatorcontrib><creatorcontrib>Alqhtani, Samar M.</creatorcontrib><creatorcontrib>Alshehri, Mohammed S.</creatorcontrib><creatorcontrib>Almakdi, Sultan</creatorcontrib><creatorcontrib>Irfan, Muhammad</creatorcontrib><creatorcontrib>Rahman, Saifur</creatorcontrib><creatorcontrib>Bade Eljak, Ladon Ahmed</creatorcontrib><title>A Novel Web Framework for Cervical Cancer Detection System: A Machine Learning Breakthrough</title><title>IEEE access</title><addtitle>Access</addtitle><description>Cervical cancer, the second most prevalent cancer among women worldwide, is primarily attributed to the human papillomavirus (HPV). Despite advances in healthcare, it remains a significant cause of mortality among women across diverse regions, surpassing other hereditary cancers. Early detection is pivotal, as survival rates exceed 90% when the disease is identified in its early stages. In response to this critical need, we introduce WFC2DS (Web Framework for Cervical Cancer Detection System), a novel expert web system specifically designed to revolutionize cervical cancer diagnosis. WFC2DS integrates a sophisticated ensemble of machine learning classification algorithms, including Artificial Neural Network (ANN), AdaBoost, K-Nearest Neighbor (KNN), Random Forest Classifier (RFC), Support Vector Machine (SVM), and Decision Tree (DT). This ensemble approach enables a comprehensive analysis of a large dataset comprising information from 858 patients with 36 attributes, with the primary objective being the early detection of cervical cancer, using the last attribute, Biopsy, as the target variable. Our evaluation criteria encompass accuracy, specificity, sensitivity, and the F1 score. Among the algorithms, RFC and DT emerge as the most promising, demonstrating exceptional performance with an accuracy of 98.1% and an F1 score of 0.98. AdaBoost shows an accuracy of 97.4% and an F1 score of 0.98, ANN attains an accuracy of 97.7% and an F1 score of 0.96, SVM achieves an accuracy of 96.2% and an F1 score of 0.96, and KNN reaches an accuracy of 90.6% with an F1 score of 0.91. This research significantly contributes to reducing the global burden of cervical cancer, emphasizing transformative advancements in women's healthcare. WFC2DS, with its cutting-edge machine learning techniques, not only improves the accuracy of cervical cancer diagnosis but also enhances the overall healthcare landscape for women worldwide.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Biophysics</subject><subject>Biopsy</subject><subject>Cancer</subject><subject>Cervical cancer</subject><subject>cervical cancer detection</subject><subject>Decision analysis</subject><subject>Decision trees</subject><subject>Detection algorithms</subject><subject>Diagnosis</subject><subject>Expert web framework</subject><subject>gyne cancer diagnosis</subject><subject>Health care</subject><subject>Human papillomavirus</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Medical diagnosis</subject><subject>Support vector machines</subject><subject>Web servers</subject><subject>Web sites</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIIOAL4GCJc4vfjrmVUB5SgUNBHDhYG2fTprQxOCmof09KEGIvuxrtzOxqkuSE0SFj1J6Psmw8nQ455XIohDGMy53kgDNtB0IJvftv3k-Om2ZBu0o7SJmD5HVEHsInLskL5uQ6wgq_QnwjZYgkw_hZeViSDGqPkVxhi76tQk2mm6bF1QUZkXvw86pGMkGIdVXPyGVEeGvnMaxn86Nkr4Rlg8e__TB5vh4_ZbeDyePNXTaaDLxQth1wz2WhoWTgTZ7qVAqf2lxwJUGzvNDGFpzrXHNrDSJ6w5kQee5LKHSBshCHyV2vWwRYuPdYrSBuXIDK_QAhzhzEtvJLdLlX3muLwFMmtaIWPJSyUAJ0mjKGndZZr_Uew8cam9YtwjrW3fmu81dKU0N1tyX6LR9D00Qs_1wZddtQXB-K24bifkPpWKc9q-re-MeQhlPFxTeMVIex</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Qathrady, Mimonah Al</creator><creator>Shaf, Ahmad</creator><creator>Ali, Tariq</creator><creator>Farooq, Umar</creator><creator>Rehman, Aqib</creator><creator>Alqhtani, Samar M.</creator><creator>Alshehri, Mohammed S.</creator><creator>Almakdi, Sultan</creator><creator>Irfan, Muhammad</creator><creator>Rahman, Saifur</creator><creator>Bade Eljak, Ladon Ahmed</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2415-7304</orcidid><orcidid>https://orcid.org/0000-0002-7262-183X</orcidid><orcidid>https://orcid.org/0000-0003-2445-0519</orcidid><orcidid>https://orcid.org/0009-0009-5994-4288</orcidid><orcidid>https://orcid.org/0000-0003-4161-6875</orcidid><orcidid>https://orcid.org/0000-0001-9471-7720</orcidid><orcidid>https://orcid.org/0000-0002-0633-5587</orcidid><orcidid>https://orcid.org/0000-0002-8664-8953</orcidid></search><sort><creationdate>2024</creationdate><title>A Novel Web Framework for Cervical Cancer Detection System: A Machine Learning Breakthrough</title><author>Qathrady, Mimonah Al ; Shaf, Ahmad ; Ali, Tariq ; Farooq, Umar ; Rehman, Aqib ; Alqhtani, Samar M. ; Alshehri, Mohammed S. ; Almakdi, Sultan ; Irfan, Muhammad ; Rahman, Saifur ; Bade Eljak, Ladon Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-2c24d6af1ac7b86843c89b3254a61bd679d226b62997eeec72133bbcfad6de4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Biophysics</topic><topic>Biopsy</topic><topic>Cancer</topic><topic>Cervical cancer</topic><topic>cervical cancer detection</topic><topic>Decision analysis</topic><topic>Decision trees</topic><topic>Detection algorithms</topic><topic>Diagnosis</topic><topic>Expert web framework</topic><topic>gyne cancer diagnosis</topic><topic>Health care</topic><topic>Human papillomavirus</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Medical diagnosis</topic><topic>Support vector machines</topic><topic>Web servers</topic><topic>Web sites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qathrady, Mimonah Al</creatorcontrib><creatorcontrib>Shaf, Ahmad</creatorcontrib><creatorcontrib>Ali, Tariq</creatorcontrib><creatorcontrib>Farooq, Umar</creatorcontrib><creatorcontrib>Rehman, Aqib</creatorcontrib><creatorcontrib>Alqhtani, Samar M.</creatorcontrib><creatorcontrib>Alshehri, Mohammed S.</creatorcontrib><creatorcontrib>Almakdi, Sultan</creatorcontrib><creatorcontrib>Irfan, Muhammad</creatorcontrib><creatorcontrib>Rahman, Saifur</creatorcontrib><creatorcontrib>Bade Eljak, Ladon Ahmed</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qathrady, Mimonah Al</au><au>Shaf, Ahmad</au><au>Ali, Tariq</au><au>Farooq, Umar</au><au>Rehman, Aqib</au><au>Alqhtani, Samar M.</au><au>Alshehri, Mohammed S.</au><au>Almakdi, Sultan</au><au>Irfan, Muhammad</au><au>Rahman, Saifur</au><au>Bade Eljak, Ladon Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Web Framework for Cervical Cancer Detection System: A Machine Learning Breakthrough</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>41542</spage><epage>41556</epage><pages>41542-41556</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Cervical cancer, the second most prevalent cancer among women worldwide, is primarily attributed to the human papillomavirus (HPV). Despite advances in healthcare, it remains a significant cause of mortality among women across diverse regions, surpassing other hereditary cancers. Early detection is pivotal, as survival rates exceed 90% when the disease is identified in its early stages. In response to this critical need, we introduce WFC2DS (Web Framework for Cervical Cancer Detection System), a novel expert web system specifically designed to revolutionize cervical cancer diagnosis. WFC2DS integrates a sophisticated ensemble of machine learning classification algorithms, including Artificial Neural Network (ANN), AdaBoost, K-Nearest Neighbor (KNN), Random Forest Classifier (RFC), Support Vector Machine (SVM), and Decision Tree (DT). This ensemble approach enables a comprehensive analysis of a large dataset comprising information from 858 patients with 36 attributes, with the primary objective being the early detection of cervical cancer, using the last attribute, Biopsy, as the target variable. Our evaluation criteria encompass accuracy, specificity, sensitivity, and the F1 score. Among the algorithms, RFC and DT emerge as the most promising, demonstrating exceptional performance with an accuracy of 98.1% and an F1 score of 0.98. AdaBoost shows an accuracy of 97.4% and an F1 score of 0.98, ANN attains an accuracy of 97.7% and an F1 score of 0.96, SVM achieves an accuracy of 96.2% and an F1 score of 0.96, and KNN reaches an accuracy of 90.6% with an F1 score of 0.91. This research significantly contributes to reducing the global burden of cervical cancer, emphasizing transformative advancements in women's healthcare. WFC2DS, with its cutting-edge machine learning techniques, not only improves the accuracy of cervical cancer diagnosis but also enhances the overall healthcare landscape for women worldwide.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3377124</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2415-7304</orcidid><orcidid>https://orcid.org/0000-0002-7262-183X</orcidid><orcidid>https://orcid.org/0000-0003-2445-0519</orcidid><orcidid>https://orcid.org/0009-0009-5994-4288</orcidid><orcidid>https://orcid.org/0000-0003-4161-6875</orcidid><orcidid>https://orcid.org/0000-0001-9471-7720</orcidid><orcidid>https://orcid.org/0000-0002-0633-5587</orcidid><orcidid>https://orcid.org/0000-0002-8664-8953</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.41542-41556
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3377124
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Algorithms
Artificial neural networks
Biophysics
Biopsy
Cancer
Cervical cancer
cervical cancer detection
Decision analysis
Decision trees
Detection algorithms
Diagnosis
Expert web framework
gyne cancer diagnosis
Health care
Human papillomavirus
Internet of Things
Machine learning
Medical diagnosis
Support vector machines
Web servers
Web sites
title A Novel Web Framework for Cervical Cancer Detection System: A Machine Learning Breakthrough
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A40%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Web%20Framework%20for%20Cervical%20Cancer%20Detection%20System:%20A%20Machine%20Learning%20Breakthrough&rft.jtitle=IEEE%20access&rft.au=Qathrady,%20Mimonah%20Al&rft.date=2024&rft.volume=12&rft.spage=41542&rft.epage=41556&rft.pages=41542-41556&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3377124&rft_dat=%3Cproquest_cross%3E2995560706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2995560706&rft_id=info:pmid/&rft_ieee_id=10472052&rft_doaj_id=oai_doaj_org_article_bc5cc69ea28146509acaf4d53a68811e&rfr_iscdi=true