Federated Deep Learning for Monkeypox Disease Detection on GAN-Augmented Dataset
After the coronavirus disease 2019 (COVID-19) outbreak, the viral infection known as monkeypox gained significant attention, and the World Health Organization (WHO) classified it as a global public health emergency. Given the similarities between monkeypox and other pox viruses, conventional classif...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024-01, Vol.12, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 12 |
creator | Kundu, Dipanjali Rahman, Md. Mahbubur Rahman, Anichur Das, Diganta Siddiqi, Umme Raihan Alam, Md. Golam Rabiul Dey, Samrat Kumar Muhammad, Ghulam Ali, Zulfiqar |
description | After the coronavirus disease 2019 (COVID-19) outbreak, the viral infection known as monkeypox gained significant attention, and the World Health Organization (WHO) classified it as a global public health emergency. Given the similarities between monkeypox and other pox viruses, conventional classification methods encounter difficulties in accurately identifying the disease. Furthermore, sharing sensitive medical data gives rise to concerns about security and privacy. Integrating deep neural networks with federated learning (FL) presents a promising avenue for addressing the challenges of medical data categorization. In light of this, we propose an FL-based framework using deep learning models to classify monkeypox and other pox viruses securely. The proposed framework has three major components: (a) a cycle-consistent generative adversarial network to augment data samples for training; (b) deep learning-based models such as MobileNetV2, Vision Transformer (ViT), and ResNet50 for the classification; and (c) a flower-federated learning environment for security. The experiments are performed using publicly available datasets. In the experiments, the ViT-B32 model yields an impressive accuracy rate of 97.90%, emphasizing the robustness of the proposed framework and its potential for secure and accurate categorization of monkeypox disease. |
doi_str_mv | 10.1109/ACCESS.2024.3370838 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3370838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10445472</ieee_id><doaj_id>oai_doaj_org_article_f1ca56ccf4e04bcba32770949dd158fe</doaj_id><sourcerecordid>2938008739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f3be5234fcb26dfa74aea5d306b2ca47a5e39b3c8e582232edfd9c107c3f62ce3</originalsourceid><addsrcrecordid>eNpNUd9LwzAQLqLgmPsL9KHgc2eaS5rmccw5B_MHTJ9DmlxGpzYz7cD992brEI-DO47v--64L0muczLOcyLvJtPpbLUaU0LZGECQEsqzZEDzQmbAoTj_118mo7bdkBhlHHExSF4f0GLQHdr0HnGbLlGHpm7WqfMhffLNB-63_ie9r1vULUZMh6arfZPGnE-es8lu_YXNka67iOiukgunP1scneoweX-YvU0fs-XLfDGdLDMDXHaZgwo5BeZMRQvrtGAaNbdAiooazYTmCLICUyIvKQWK1llpciIMuIIahGGy6HWt1xu1DfWXDnvlda2OAx_WSoeuNp-oXG40L4xxDAmrTKWBCkEkk9bmvHQHrdteaxv89w7bTm38LjTxfEUllPFbAmREQY8ywbdtQPe3NSfq4ITqnVAHJ9TJici66Vk1Iv5jMMaZoPALHYqE3A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2938008739</pqid></control><display><type>article</type><title>Federated Deep Learning for Monkeypox Disease Detection on GAN-Augmented Dataset</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Kundu, Dipanjali ; Rahman, Md. Mahbubur ; Rahman, Anichur ; Das, Diganta ; Siddiqi, Umme Raihan ; Alam, Md. Golam Rabiul ; Dey, Samrat Kumar ; Muhammad, Ghulam ; Ali, Zulfiqar</creator><creatorcontrib>Kundu, Dipanjali ; Rahman, Md. Mahbubur ; Rahman, Anichur ; Das, Diganta ; Siddiqi, Umme Raihan ; Alam, Md. Golam Rabiul ; Dey, Samrat Kumar ; Muhammad, Ghulam ; Ali, Zulfiqar</creatorcontrib><description>After the coronavirus disease 2019 (COVID-19) outbreak, the viral infection known as monkeypox gained significant attention, and the World Health Organization (WHO) classified it as a global public health emergency. Given the similarities between monkeypox and other pox viruses, conventional classification methods encounter difficulties in accurately identifying the disease. Furthermore, sharing sensitive medical data gives rise to concerns about security and privacy. Integrating deep neural networks with federated learning (FL) presents a promising avenue for addressing the challenges of medical data categorization. In light of this, we propose an FL-based framework using deep learning models to classify monkeypox and other pox viruses securely. The proposed framework has three major components: (a) a cycle-consistent generative adversarial network to augment data samples for training; (b) deep learning-based models such as MobileNetV2, Vision Transformer (ViT), and ResNet50 for the classification; and (c) a flower-federated learning environment for security. The experiments are performed using publicly available datasets. In the experiments, the ViT-B32 model yields an impressive accuracy rate of 97.90%, emphasizing the robustness of the proposed framework and its potential for secure and accurate categorization of monkeypox disease.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3370838</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Biomedical measurement ; Classification ; Convolution Neural Network ; Convolutional neural networks ; Coronaviruses ; COVID-19 ; Cycle GAN ; Data analysis ; Data augmentation ; Data models ; Datasets ; Deep learning ; Deep Neural Network ; Diseases ; Federated learning ; Generative adversarial networks ; Lesions ; Machine learning ; Monkeypox Detection ; Mpox ; Public health ; Security ; Skin ; Viral diseases ; Viruses ; Viruses (medical) ; Vision Transformer ; WHO</subject><ispartof>IEEE access, 2024-01, Vol.12, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-f3be5234fcb26dfa74aea5d306b2ca47a5e39b3c8e582232edfd9c107c3f62ce3</cites><orcidid>0000-0002-9054-7557 ; 0000-0002-9781-3969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10445472$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Kundu, Dipanjali</creatorcontrib><creatorcontrib>Rahman, Md. Mahbubur</creatorcontrib><creatorcontrib>Rahman, Anichur</creatorcontrib><creatorcontrib>Das, Diganta</creatorcontrib><creatorcontrib>Siddiqi, Umme Raihan</creatorcontrib><creatorcontrib>Alam, Md. Golam Rabiul</creatorcontrib><creatorcontrib>Dey, Samrat Kumar</creatorcontrib><creatorcontrib>Muhammad, Ghulam</creatorcontrib><creatorcontrib>Ali, Zulfiqar</creatorcontrib><title>Federated Deep Learning for Monkeypox Disease Detection on GAN-Augmented Dataset</title><title>IEEE access</title><addtitle>Access</addtitle><description>After the coronavirus disease 2019 (COVID-19) outbreak, the viral infection known as monkeypox gained significant attention, and the World Health Organization (WHO) classified it as a global public health emergency. Given the similarities between monkeypox and other pox viruses, conventional classification methods encounter difficulties in accurately identifying the disease. Furthermore, sharing sensitive medical data gives rise to concerns about security and privacy. Integrating deep neural networks with federated learning (FL) presents a promising avenue for addressing the challenges of medical data categorization. In light of this, we propose an FL-based framework using deep learning models to classify monkeypox and other pox viruses securely. The proposed framework has three major components: (a) a cycle-consistent generative adversarial network to augment data samples for training; (b) deep learning-based models such as MobileNetV2, Vision Transformer (ViT), and ResNet50 for the classification; and (c) a flower-federated learning environment for security. The experiments are performed using publicly available datasets. In the experiments, the ViT-B32 model yields an impressive accuracy rate of 97.90%, emphasizing the robustness of the proposed framework and its potential for secure and accurate categorization of monkeypox disease.</description><subject>Artificial neural networks</subject><subject>Biomedical measurement</subject><subject>Classification</subject><subject>Convolution Neural Network</subject><subject>Convolutional neural networks</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Cycle GAN</subject><subject>Data analysis</subject><subject>Data augmentation</subject><subject>Data models</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Deep Neural Network</subject><subject>Diseases</subject><subject>Federated learning</subject><subject>Generative adversarial networks</subject><subject>Lesions</subject><subject>Machine learning</subject><subject>Monkeypox Detection</subject><subject>Mpox</subject><subject>Public health</subject><subject>Security</subject><subject>Skin</subject><subject>Viral diseases</subject><subject>Viruses</subject><subject>Viruses (medical)</subject><subject>Vision Transformer</subject><subject>WHO</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUd9LwzAQLqLgmPsL9KHgc2eaS5rmccw5B_MHTJ9DmlxGpzYz7cD992brEI-DO47v--64L0muczLOcyLvJtPpbLUaU0LZGECQEsqzZEDzQmbAoTj_118mo7bdkBhlHHExSF4f0GLQHdr0HnGbLlGHpm7WqfMhffLNB-63_ie9r1vULUZMh6arfZPGnE-es8lu_YXNka67iOiukgunP1scneoweX-YvU0fs-XLfDGdLDMDXHaZgwo5BeZMRQvrtGAaNbdAiooazYTmCLICUyIvKQWK1llpciIMuIIahGGy6HWt1xu1DfWXDnvlda2OAx_WSoeuNp-oXG40L4xxDAmrTKWBCkEkk9bmvHQHrdteaxv89w7bTm38LjTxfEUllPFbAmREQY8ywbdtQPe3NSfq4ITqnVAHJ9TJici66Vk1Iv5jMMaZoPALHYqE3A</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Kundu, Dipanjali</creator><creator>Rahman, Md. Mahbubur</creator><creator>Rahman, Anichur</creator><creator>Das, Diganta</creator><creator>Siddiqi, Umme Raihan</creator><creator>Alam, Md. Golam Rabiul</creator><creator>Dey, Samrat Kumar</creator><creator>Muhammad, Ghulam</creator><creator>Ali, Zulfiqar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9054-7557</orcidid><orcidid>https://orcid.org/0000-0002-9781-3969</orcidid></search><sort><creationdate>20240101</creationdate><title>Federated Deep Learning for Monkeypox Disease Detection on GAN-Augmented Dataset</title><author>Kundu, Dipanjali ; Rahman, Md. Mahbubur ; Rahman, Anichur ; Das, Diganta ; Siddiqi, Umme Raihan ; Alam, Md. Golam Rabiul ; Dey, Samrat Kumar ; Muhammad, Ghulam ; Ali, Zulfiqar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f3be5234fcb26dfa74aea5d306b2ca47a5e39b3c8e582232edfd9c107c3f62ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Biomedical measurement</topic><topic>Classification</topic><topic>Convolution Neural Network</topic><topic>Convolutional neural networks</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Cycle GAN</topic><topic>Data analysis</topic><topic>Data augmentation</topic><topic>Data models</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Deep Neural Network</topic><topic>Diseases</topic><topic>Federated learning</topic><topic>Generative adversarial networks</topic><topic>Lesions</topic><topic>Machine learning</topic><topic>Monkeypox Detection</topic><topic>Mpox</topic><topic>Public health</topic><topic>Security</topic><topic>Skin</topic><topic>Viral diseases</topic><topic>Viruses</topic><topic>Viruses (medical)</topic><topic>Vision Transformer</topic><topic>WHO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kundu, Dipanjali</creatorcontrib><creatorcontrib>Rahman, Md. Mahbubur</creatorcontrib><creatorcontrib>Rahman, Anichur</creatorcontrib><creatorcontrib>Das, Diganta</creatorcontrib><creatorcontrib>Siddiqi, Umme Raihan</creatorcontrib><creatorcontrib>Alam, Md. Golam Rabiul</creatorcontrib><creatorcontrib>Dey, Samrat Kumar</creatorcontrib><creatorcontrib>Muhammad, Ghulam</creatorcontrib><creatorcontrib>Ali, Zulfiqar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kundu, Dipanjali</au><au>Rahman, Md. Mahbubur</au><au>Rahman, Anichur</au><au>Das, Diganta</au><au>Siddiqi, Umme Raihan</au><au>Alam, Md. Golam Rabiul</au><au>Dey, Samrat Kumar</au><au>Muhammad, Ghulam</au><au>Ali, Zulfiqar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Federated Deep Learning for Monkeypox Disease Detection on GAN-Augmented Dataset</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>After the coronavirus disease 2019 (COVID-19) outbreak, the viral infection known as monkeypox gained significant attention, and the World Health Organization (WHO) classified it as a global public health emergency. Given the similarities between monkeypox and other pox viruses, conventional classification methods encounter difficulties in accurately identifying the disease. Furthermore, sharing sensitive medical data gives rise to concerns about security and privacy. Integrating deep neural networks with federated learning (FL) presents a promising avenue for addressing the challenges of medical data categorization. In light of this, we propose an FL-based framework using deep learning models to classify monkeypox and other pox viruses securely. The proposed framework has three major components: (a) a cycle-consistent generative adversarial network to augment data samples for training; (b) deep learning-based models such as MobileNetV2, Vision Transformer (ViT), and ResNet50 for the classification; and (c) a flower-federated learning environment for security. The experiments are performed using publicly available datasets. In the experiments, the ViT-B32 model yields an impressive accuracy rate of 97.90%, emphasizing the robustness of the proposed framework and its potential for secure and accurate categorization of monkeypox disease.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3370838</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9054-7557</orcidid><orcidid>https://orcid.org/0000-0002-9781-3969</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024-01, Vol.12, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2024_3370838 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals |
subjects | Artificial neural networks Biomedical measurement Classification Convolution Neural Network Convolutional neural networks Coronaviruses COVID-19 Cycle GAN Data analysis Data augmentation Data models Datasets Deep learning Deep Neural Network Diseases Federated learning Generative adversarial networks Lesions Machine learning Monkeypox Detection Mpox Public health Security Skin Viral diseases Viruses Viruses (medical) Vision Transformer WHO |
title | Federated Deep Learning for Monkeypox Disease Detection on GAN-Augmented Dataset |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A15%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Federated%20Deep%20Learning%20for%20Monkeypox%20Disease%20Detection%20on%20GAN-Augmented%20Dataset&rft.jtitle=IEEE%20access&rft.au=Kundu,%20Dipanjali&rft.date=2024-01-01&rft.volume=12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3370838&rft_dat=%3Cproquest_cross%3E2938008739%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2938008739&rft_id=info:pmid/&rft_ieee_id=10445472&rft_doaj_id=oai_doaj_org_article_f1ca56ccf4e04bcba32770949dd158fe&rfr_iscdi=true |