Federated Deep Learning for Monkeypox Disease Detection on GAN-Augmented Dataset

After the coronavirus disease 2019 (COVID-19) outbreak, the viral infection known as monkeypox gained significant attention, and the World Health Organization (WHO) classified it as a global public health emergency. Given the similarities between monkeypox and other pox viruses, conventional classif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024-01, Vol.12, p.1-1
Hauptverfasser: Kundu, Dipanjali, Rahman, Md. Mahbubur, Rahman, Anichur, Das, Diganta, Siddiqi, Umme Raihan, Alam, Md. Golam Rabiul, Dey, Samrat Kumar, Muhammad, Ghulam, Ali, Zulfiqar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 12
creator Kundu, Dipanjali
Rahman, Md. Mahbubur
Rahman, Anichur
Das, Diganta
Siddiqi, Umme Raihan
Alam, Md. Golam Rabiul
Dey, Samrat Kumar
Muhammad, Ghulam
Ali, Zulfiqar
description After the coronavirus disease 2019 (COVID-19) outbreak, the viral infection known as monkeypox gained significant attention, and the World Health Organization (WHO) classified it as a global public health emergency. Given the similarities between monkeypox and other pox viruses, conventional classification methods encounter difficulties in accurately identifying the disease. Furthermore, sharing sensitive medical data gives rise to concerns about security and privacy. Integrating deep neural networks with federated learning (FL) presents a promising avenue for addressing the challenges of medical data categorization. In light of this, we propose an FL-based framework using deep learning models to classify monkeypox and other pox viruses securely. The proposed framework has three major components: (a) a cycle-consistent generative adversarial network to augment data samples for training; (b) deep learning-based models such as MobileNetV2, Vision Transformer (ViT), and ResNet50 for the classification; and (c) a flower-federated learning environment for security. The experiments are performed using publicly available datasets. In the experiments, the ViT-B32 model yields an impressive accuracy rate of 97.90%, emphasizing the robustness of the proposed framework and its potential for secure and accurate categorization of monkeypox disease.
doi_str_mv 10.1109/ACCESS.2024.3370838
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3370838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10445472</ieee_id><doaj_id>oai_doaj_org_article_f1ca56ccf4e04bcba32770949dd158fe</doaj_id><sourcerecordid>2938008739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f3be5234fcb26dfa74aea5d306b2ca47a5e39b3c8e582232edfd9c107c3f62ce3</originalsourceid><addsrcrecordid>eNpNUd9LwzAQLqLgmPsL9KHgc2eaS5rmccw5B_MHTJ9DmlxGpzYz7cD992brEI-DO47v--64L0muczLOcyLvJtPpbLUaU0LZGECQEsqzZEDzQmbAoTj_118mo7bdkBhlHHExSF4f0GLQHdr0HnGbLlGHpm7WqfMhffLNB-63_ie9r1vULUZMh6arfZPGnE-es8lu_YXNka67iOiukgunP1scneoweX-YvU0fs-XLfDGdLDMDXHaZgwo5BeZMRQvrtGAaNbdAiooazYTmCLICUyIvKQWK1llpciIMuIIahGGy6HWt1xu1DfWXDnvlda2OAx_WSoeuNp-oXG40L4xxDAmrTKWBCkEkk9bmvHQHrdteaxv89w7bTm38LjTxfEUllPFbAmREQY8ywbdtQPe3NSfq4ITqnVAHJ9TJici66Vk1Iv5jMMaZoPALHYqE3A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2938008739</pqid></control><display><type>article</type><title>Federated Deep Learning for Monkeypox Disease Detection on GAN-Augmented Dataset</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Kundu, Dipanjali ; Rahman, Md. Mahbubur ; Rahman, Anichur ; Das, Diganta ; Siddiqi, Umme Raihan ; Alam, Md. Golam Rabiul ; Dey, Samrat Kumar ; Muhammad, Ghulam ; Ali, Zulfiqar</creator><creatorcontrib>Kundu, Dipanjali ; Rahman, Md. Mahbubur ; Rahman, Anichur ; Das, Diganta ; Siddiqi, Umme Raihan ; Alam, Md. Golam Rabiul ; Dey, Samrat Kumar ; Muhammad, Ghulam ; Ali, Zulfiqar</creatorcontrib><description>After the coronavirus disease 2019 (COVID-19) outbreak, the viral infection known as monkeypox gained significant attention, and the World Health Organization (WHO) classified it as a global public health emergency. Given the similarities between monkeypox and other pox viruses, conventional classification methods encounter difficulties in accurately identifying the disease. Furthermore, sharing sensitive medical data gives rise to concerns about security and privacy. Integrating deep neural networks with federated learning (FL) presents a promising avenue for addressing the challenges of medical data categorization. In light of this, we propose an FL-based framework using deep learning models to classify monkeypox and other pox viruses securely. The proposed framework has three major components: (a) a cycle-consistent generative adversarial network to augment data samples for training; (b) deep learning-based models such as MobileNetV2, Vision Transformer (ViT), and ResNet50 for the classification; and (c) a flower-federated learning environment for security. The experiments are performed using publicly available datasets. In the experiments, the ViT-B32 model yields an impressive accuracy rate of 97.90%, emphasizing the robustness of the proposed framework and its potential for secure and accurate categorization of monkeypox disease.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3370838</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Biomedical measurement ; Classification ; Convolution Neural Network ; Convolutional neural networks ; Coronaviruses ; COVID-19 ; Cycle GAN ; Data analysis ; Data augmentation ; Data models ; Datasets ; Deep learning ; Deep Neural Network ; Diseases ; Federated learning ; Generative adversarial networks ; Lesions ; Machine learning ; Monkeypox Detection ; Mpox ; Public health ; Security ; Skin ; Viral diseases ; Viruses ; Viruses (medical) ; Vision Transformer ; WHO</subject><ispartof>IEEE access, 2024-01, Vol.12, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-f3be5234fcb26dfa74aea5d306b2ca47a5e39b3c8e582232edfd9c107c3f62ce3</cites><orcidid>0000-0002-9054-7557 ; 0000-0002-9781-3969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10445472$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Kundu, Dipanjali</creatorcontrib><creatorcontrib>Rahman, Md. Mahbubur</creatorcontrib><creatorcontrib>Rahman, Anichur</creatorcontrib><creatorcontrib>Das, Diganta</creatorcontrib><creatorcontrib>Siddiqi, Umme Raihan</creatorcontrib><creatorcontrib>Alam, Md. Golam Rabiul</creatorcontrib><creatorcontrib>Dey, Samrat Kumar</creatorcontrib><creatorcontrib>Muhammad, Ghulam</creatorcontrib><creatorcontrib>Ali, Zulfiqar</creatorcontrib><title>Federated Deep Learning for Monkeypox Disease Detection on GAN-Augmented Dataset</title><title>IEEE access</title><addtitle>Access</addtitle><description>After the coronavirus disease 2019 (COVID-19) outbreak, the viral infection known as monkeypox gained significant attention, and the World Health Organization (WHO) classified it as a global public health emergency. Given the similarities between monkeypox and other pox viruses, conventional classification methods encounter difficulties in accurately identifying the disease. Furthermore, sharing sensitive medical data gives rise to concerns about security and privacy. Integrating deep neural networks with federated learning (FL) presents a promising avenue for addressing the challenges of medical data categorization. In light of this, we propose an FL-based framework using deep learning models to classify monkeypox and other pox viruses securely. The proposed framework has three major components: (a) a cycle-consistent generative adversarial network to augment data samples for training; (b) deep learning-based models such as MobileNetV2, Vision Transformer (ViT), and ResNet50 for the classification; and (c) a flower-federated learning environment for security. The experiments are performed using publicly available datasets. In the experiments, the ViT-B32 model yields an impressive accuracy rate of 97.90%, emphasizing the robustness of the proposed framework and its potential for secure and accurate categorization of monkeypox disease.</description><subject>Artificial neural networks</subject><subject>Biomedical measurement</subject><subject>Classification</subject><subject>Convolution Neural Network</subject><subject>Convolutional neural networks</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Cycle GAN</subject><subject>Data analysis</subject><subject>Data augmentation</subject><subject>Data models</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Deep Neural Network</subject><subject>Diseases</subject><subject>Federated learning</subject><subject>Generative adversarial networks</subject><subject>Lesions</subject><subject>Machine learning</subject><subject>Monkeypox Detection</subject><subject>Mpox</subject><subject>Public health</subject><subject>Security</subject><subject>Skin</subject><subject>Viral diseases</subject><subject>Viruses</subject><subject>Viruses (medical)</subject><subject>Vision Transformer</subject><subject>WHO</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUd9LwzAQLqLgmPsL9KHgc2eaS5rmccw5B_MHTJ9DmlxGpzYz7cD992brEI-DO47v--64L0muczLOcyLvJtPpbLUaU0LZGECQEsqzZEDzQmbAoTj_118mo7bdkBhlHHExSF4f0GLQHdr0HnGbLlGHpm7WqfMhffLNB-63_ie9r1vULUZMh6arfZPGnE-es8lu_YXNka67iOiukgunP1scneoweX-YvU0fs-XLfDGdLDMDXHaZgwo5BeZMRQvrtGAaNbdAiooazYTmCLICUyIvKQWK1llpciIMuIIahGGy6HWt1xu1DfWXDnvlda2OAx_WSoeuNp-oXG40L4xxDAmrTKWBCkEkk9bmvHQHrdteaxv89w7bTm38LjTxfEUllPFbAmREQY8ywbdtQPe3NSfq4ITqnVAHJ9TJici66Vk1Iv5jMMaZoPALHYqE3A</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Kundu, Dipanjali</creator><creator>Rahman, Md. Mahbubur</creator><creator>Rahman, Anichur</creator><creator>Das, Diganta</creator><creator>Siddiqi, Umme Raihan</creator><creator>Alam, Md. Golam Rabiul</creator><creator>Dey, Samrat Kumar</creator><creator>Muhammad, Ghulam</creator><creator>Ali, Zulfiqar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9054-7557</orcidid><orcidid>https://orcid.org/0000-0002-9781-3969</orcidid></search><sort><creationdate>20240101</creationdate><title>Federated Deep Learning for Monkeypox Disease Detection on GAN-Augmented Dataset</title><author>Kundu, Dipanjali ; Rahman, Md. Mahbubur ; Rahman, Anichur ; Das, Diganta ; Siddiqi, Umme Raihan ; Alam, Md. Golam Rabiul ; Dey, Samrat Kumar ; Muhammad, Ghulam ; Ali, Zulfiqar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f3be5234fcb26dfa74aea5d306b2ca47a5e39b3c8e582232edfd9c107c3f62ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Biomedical measurement</topic><topic>Classification</topic><topic>Convolution Neural Network</topic><topic>Convolutional neural networks</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Cycle GAN</topic><topic>Data analysis</topic><topic>Data augmentation</topic><topic>Data models</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Deep Neural Network</topic><topic>Diseases</topic><topic>Federated learning</topic><topic>Generative adversarial networks</topic><topic>Lesions</topic><topic>Machine learning</topic><topic>Monkeypox Detection</topic><topic>Mpox</topic><topic>Public health</topic><topic>Security</topic><topic>Skin</topic><topic>Viral diseases</topic><topic>Viruses</topic><topic>Viruses (medical)</topic><topic>Vision Transformer</topic><topic>WHO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kundu, Dipanjali</creatorcontrib><creatorcontrib>Rahman, Md. Mahbubur</creatorcontrib><creatorcontrib>Rahman, Anichur</creatorcontrib><creatorcontrib>Das, Diganta</creatorcontrib><creatorcontrib>Siddiqi, Umme Raihan</creatorcontrib><creatorcontrib>Alam, Md. Golam Rabiul</creatorcontrib><creatorcontrib>Dey, Samrat Kumar</creatorcontrib><creatorcontrib>Muhammad, Ghulam</creatorcontrib><creatorcontrib>Ali, Zulfiqar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kundu, Dipanjali</au><au>Rahman, Md. Mahbubur</au><au>Rahman, Anichur</au><au>Das, Diganta</au><au>Siddiqi, Umme Raihan</au><au>Alam, Md. Golam Rabiul</au><au>Dey, Samrat Kumar</au><au>Muhammad, Ghulam</au><au>Ali, Zulfiqar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Federated Deep Learning for Monkeypox Disease Detection on GAN-Augmented Dataset</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>After the coronavirus disease 2019 (COVID-19) outbreak, the viral infection known as monkeypox gained significant attention, and the World Health Organization (WHO) classified it as a global public health emergency. Given the similarities between monkeypox and other pox viruses, conventional classification methods encounter difficulties in accurately identifying the disease. Furthermore, sharing sensitive medical data gives rise to concerns about security and privacy. Integrating deep neural networks with federated learning (FL) presents a promising avenue for addressing the challenges of medical data categorization. In light of this, we propose an FL-based framework using deep learning models to classify monkeypox and other pox viruses securely. The proposed framework has three major components: (a) a cycle-consistent generative adversarial network to augment data samples for training; (b) deep learning-based models such as MobileNetV2, Vision Transformer (ViT), and ResNet50 for the classification; and (c) a flower-federated learning environment for security. The experiments are performed using publicly available datasets. In the experiments, the ViT-B32 model yields an impressive accuracy rate of 97.90%, emphasizing the robustness of the proposed framework and its potential for secure and accurate categorization of monkeypox disease.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3370838</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9054-7557</orcidid><orcidid>https://orcid.org/0000-0002-9781-3969</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024-01, Vol.12, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3370838
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals
subjects Artificial neural networks
Biomedical measurement
Classification
Convolution Neural Network
Convolutional neural networks
Coronaviruses
COVID-19
Cycle GAN
Data analysis
Data augmentation
Data models
Datasets
Deep learning
Deep Neural Network
Diseases
Federated learning
Generative adversarial networks
Lesions
Machine learning
Monkeypox Detection
Mpox
Public health
Security
Skin
Viral diseases
Viruses
Viruses (medical)
Vision Transformer
WHO
title Federated Deep Learning for Monkeypox Disease Detection on GAN-Augmented Dataset
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A15%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Federated%20Deep%20Learning%20for%20Monkeypox%20Disease%20Detection%20on%20GAN-Augmented%20Dataset&rft.jtitle=IEEE%20access&rft.au=Kundu,%20Dipanjali&rft.date=2024-01-01&rft.volume=12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3370838&rft_dat=%3Cproquest_cross%3E2938008739%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2938008739&rft_id=info:pmid/&rft_ieee_id=10445472&rft_doaj_id=oai_doaj_org_article_f1ca56ccf4e04bcba32770949dd158fe&rfr_iscdi=true