BP-YOLO: A Real-Time Product Detection and Shopping Behaviors Recognition Model for Intelligent Unmanned Vending Machine
Intelligent unmanned vending machines (UVMs) based on machine vision have attracted great attention in the unmanned retail industry. However, due to the complexity of practical application scenarios and environments, the existing vision-based intelligent UVMs face challenges related to missed-detect...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024-01, Vol.12, p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 12 |
creator | Li, Jingxiang Tang, Fuquan Zhu, Chao He, Shiwei Zhang, Shujin Su, Yu |
description | Intelligent unmanned vending machines (UVMs) based on machine vision have attracted great attention in the unmanned retail industry. However, due to the complexity of practical application scenarios and environments, the existing vision-based intelligent UVMs face challenges related to missed-detection and mis-detection of product, and require costly physical components such as the infrared radio frequency sensors to capture shopping behaviors. In this study, we propose a BP-YOLO, the real-time model that integrates optimized YOLOv7 and BlazePose for product detection and shopping behaviors recognition. BP-YOLO can accurately detect the products purchased by consumers and their shopping behaviors in complex scenarios. To address the problems of missed-detection and mis-detection, we introduce the 3D attention mechanism SimAM and the deformable ConvNets v2 (DCNv2) to recombine and optimize the one-stage object detection model YOLOv7. This method reduces the interference of the invalid information in complex scenarios by adaptively weighting each channel and 3D spatial features, focuses on feature information in a sparse space, and minimizes the loss of feature information during the transmission process based on multi-scale feature extraction and fusion. To recognize and judge the shopping behaviors of consumers, we track the hand and arm key points of consumers using the pose estimation model BlazePose. Using the mAP@[0.5:0.95] as the evaluation metric for product detection, the experimental results on a customized product dataset show that BP-YOLO achieves an average accuracy of 96.17% for all product categories detection; the average success rate of consumer shopping recognition reaches 92%, 98%, and 94.7% under three light and noise intensity, respectively. Therefore, our BP-YOLO model for intelligent UVMs has effectiveness in commercial deployment. |
doi_str_mv | 10.1109/ACCESS.2024.3361675 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3361675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10418907</ieee_id><doaj_id>oai_doaj_org_article_9112efbd2e1444acb194196d07066d1e</doaj_id><sourcerecordid>2926267784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-16bc7670d540f27250c03fdcf9abbef17e30722d51bf04936d01c096b3c877303</originalsourceid><addsrcrecordid>eNpNkU9PGzEQxVcIpCLKJ2gPlnre4H9rx9xCgDZSUFADSJwsrz1OHG3s1LtB5duzYRFiLjMavd-bkV5R_CB4RAhWF5Pp9Ga5HFFM-YgxQYSsjopTSoQqWcXE8Zf5W3Hethvc17hfVfK0-H91Xz4v5otLNEF_wTTlQ9gCus_J7W2HrqED24UUkYkOLddptwtxha5gbV5Cym2P2LSK4V1ylxw0yKeMZrGDpgkriB16jFsTIzj0BNEd4Dtj1yHC9-LEm6aF849-Vjze3jxM_5Tzxe_ZdDIvLatUVxJRWykkdhXHnkpaYYuZd9YrU9fgiQSGJaWuIrXHXDHhMLFYiZrZsZQMs7NiNvi6ZDZ6l8PW5FedTNDvi5RX2uQu2Aa0IoSCrx0Fwjk3tiaKE9U7SiyEI9B7_Rq8djn920Pb6U3a59i_r6miggopx7xXsUFlc2rbDP7zKsH6kJgeEtOHxPRHYj31c6ACAHwhOBkrLNkbgz2QwA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926267784</pqid></control><display><type>article</type><title>BP-YOLO: A Real-Time Product Detection and Shopping Behaviors Recognition Model for Intelligent Unmanned Vending Machine</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Jingxiang ; Tang, Fuquan ; Zhu, Chao ; He, Shiwei ; Zhang, Shujin ; Su, Yu</creator><creatorcontrib>Li, Jingxiang ; Tang, Fuquan ; Zhu, Chao ; He, Shiwei ; Zhang, Shujin ; Su, Yu</creatorcontrib><description>Intelligent unmanned vending machines (UVMs) based on machine vision have attracted great attention in the unmanned retail industry. However, due to the complexity of practical application scenarios and environments, the existing vision-based intelligent UVMs face challenges related to missed-detection and mis-detection of product, and require costly physical components such as the infrared radio frequency sensors to capture shopping behaviors. In this study, we propose a BP-YOLO, the real-time model that integrates optimized YOLOv7 and BlazePose for product detection and shopping behaviors recognition. BP-YOLO can accurately detect the products purchased by consumers and their shopping behaviors in complex scenarios. To address the problems of missed-detection and mis-detection, we introduce the 3D attention mechanism SimAM and the deformable ConvNets v2 (DCNv2) to recombine and optimize the one-stage object detection model YOLOv7. This method reduces the interference of the invalid information in complex scenarios by adaptively weighting each channel and 3D spatial features, focuses on feature information in a sparse space, and minimizes the loss of feature information during the transmission process based on multi-scale feature extraction and fusion. To recognize and judge the shopping behaviors of consumers, we track the hand and arm key points of consumers using the pose estimation model BlazePose. Using the mAP@[0.5:0.95] as the evaluation metric for product detection, the experimental results on a customized product dataset show that BP-YOLO achieves an average accuracy of 96.17% for all product categories detection; the average success rate of consumer shopping recognition reaches 92%, 98%, and 94.7% under three light and noise intensity, respectively. Therefore, our BP-YOLO model for intelligent UVMs has effectiveness in commercial deployment.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3361675</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Autonomous systems ; Behavioral sciences ; BlazePose ; BP-YOLO ; Complexity ; Consumer behavior ; Consumers ; Costs ; Customer profiles ; Feature extraction ; Formability ; Infrared detectors ; Inventory management ; Luminous intensity ; Machine vision ; Noise intensity ; Object recognition ; Packaging ; Pose estimation ; product detection ; Real time ; Real-time systems ; Shopping ; shopping behaviors recognition ; Task analysis ; unmanned vending machines ; Vending machines ; YOLO</subject><ispartof>IEEE access, 2024-01, Vol.12, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-16bc7670d540f27250c03fdcf9abbef17e30722d51bf04936d01c096b3c877303</cites><orcidid>0009-0001-9526-1523 ; 0000-0002-9998-098X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10418907$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Li, Jingxiang</creatorcontrib><creatorcontrib>Tang, Fuquan</creatorcontrib><creatorcontrib>Zhu, Chao</creatorcontrib><creatorcontrib>He, Shiwei</creatorcontrib><creatorcontrib>Zhang, Shujin</creatorcontrib><creatorcontrib>Su, Yu</creatorcontrib><title>BP-YOLO: A Real-Time Product Detection and Shopping Behaviors Recognition Model for Intelligent Unmanned Vending Machine</title><title>IEEE access</title><addtitle>Access</addtitle><description>Intelligent unmanned vending machines (UVMs) based on machine vision have attracted great attention in the unmanned retail industry. However, due to the complexity of practical application scenarios and environments, the existing vision-based intelligent UVMs face challenges related to missed-detection and mis-detection of product, and require costly physical components such as the infrared radio frequency sensors to capture shopping behaviors. In this study, we propose a BP-YOLO, the real-time model that integrates optimized YOLOv7 and BlazePose for product detection and shopping behaviors recognition. BP-YOLO can accurately detect the products purchased by consumers and their shopping behaviors in complex scenarios. To address the problems of missed-detection and mis-detection, we introduce the 3D attention mechanism SimAM and the deformable ConvNets v2 (DCNv2) to recombine and optimize the one-stage object detection model YOLOv7. This method reduces the interference of the invalid information in complex scenarios by adaptively weighting each channel and 3D spatial features, focuses on feature information in a sparse space, and minimizes the loss of feature information during the transmission process based on multi-scale feature extraction and fusion. To recognize and judge the shopping behaviors of consumers, we track the hand and arm key points of consumers using the pose estimation model BlazePose. Using the mAP@[0.5:0.95] as the evaluation metric for product detection, the experimental results on a customized product dataset show that BP-YOLO achieves an average accuracy of 96.17% for all product categories detection; the average success rate of consumer shopping recognition reaches 92%, 98%, and 94.7% under three light and noise intensity, respectively. Therefore, our BP-YOLO model for intelligent UVMs has effectiveness in commercial deployment.</description><subject>Autonomous systems</subject><subject>Behavioral sciences</subject><subject>BlazePose</subject><subject>BP-YOLO</subject><subject>Complexity</subject><subject>Consumer behavior</subject><subject>Consumers</subject><subject>Costs</subject><subject>Customer profiles</subject><subject>Feature extraction</subject><subject>Formability</subject><subject>Infrared detectors</subject><subject>Inventory management</subject><subject>Luminous intensity</subject><subject>Machine vision</subject><subject>Noise intensity</subject><subject>Object recognition</subject><subject>Packaging</subject><subject>Pose estimation</subject><subject>product detection</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Shopping</subject><subject>shopping behaviors recognition</subject><subject>Task analysis</subject><subject>unmanned vending machines</subject><subject>Vending machines</subject><subject>YOLO</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9PGzEQxVcIpCLKJ2gPlnre4H9rx9xCgDZSUFADSJwsrz1OHG3s1LtB5duzYRFiLjMavd-bkV5R_CB4RAhWF5Pp9Ga5HFFM-YgxQYSsjopTSoQqWcXE8Zf5W3Hethvc17hfVfK0-H91Xz4v5otLNEF_wTTlQ9gCus_J7W2HrqED24UUkYkOLddptwtxha5gbV5Cym2P2LSK4V1ylxw0yKeMZrGDpgkriB16jFsTIzj0BNEd4Dtj1yHC9-LEm6aF849-Vjze3jxM_5Tzxe_ZdDIvLatUVxJRWykkdhXHnkpaYYuZd9YrU9fgiQSGJaWuIrXHXDHhMLFYiZrZsZQMs7NiNvi6ZDZ6l8PW5FedTNDvi5RX2uQu2Aa0IoSCrx0Fwjk3tiaKE9U7SiyEI9B7_Rq8djn920Pb6U3a59i_r6miggopx7xXsUFlc2rbDP7zKsH6kJgeEtOHxPRHYj31c6ACAHwhOBkrLNkbgz2QwA</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Li, Jingxiang</creator><creator>Tang, Fuquan</creator><creator>Zhu, Chao</creator><creator>He, Shiwei</creator><creator>Zhang, Shujin</creator><creator>Su, Yu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0001-9526-1523</orcidid><orcidid>https://orcid.org/0000-0002-9998-098X</orcidid></search><sort><creationdate>20240101</creationdate><title>BP-YOLO: A Real-Time Product Detection and Shopping Behaviors Recognition Model for Intelligent Unmanned Vending Machine</title><author>Li, Jingxiang ; Tang, Fuquan ; Zhu, Chao ; He, Shiwei ; Zhang, Shujin ; Su, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-16bc7670d540f27250c03fdcf9abbef17e30722d51bf04936d01c096b3c877303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autonomous systems</topic><topic>Behavioral sciences</topic><topic>BlazePose</topic><topic>BP-YOLO</topic><topic>Complexity</topic><topic>Consumer behavior</topic><topic>Consumers</topic><topic>Costs</topic><topic>Customer profiles</topic><topic>Feature extraction</topic><topic>Formability</topic><topic>Infrared detectors</topic><topic>Inventory management</topic><topic>Luminous intensity</topic><topic>Machine vision</topic><topic>Noise intensity</topic><topic>Object recognition</topic><topic>Packaging</topic><topic>Pose estimation</topic><topic>product detection</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Shopping</topic><topic>shopping behaviors recognition</topic><topic>Task analysis</topic><topic>unmanned vending machines</topic><topic>Vending machines</topic><topic>YOLO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jingxiang</creatorcontrib><creatorcontrib>Tang, Fuquan</creatorcontrib><creatorcontrib>Zhu, Chao</creatorcontrib><creatorcontrib>He, Shiwei</creatorcontrib><creatorcontrib>Zhang, Shujin</creatorcontrib><creatorcontrib>Su, Yu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jingxiang</au><au>Tang, Fuquan</au><au>Zhu, Chao</au><au>He, Shiwei</au><au>Zhang, Shujin</au><au>Su, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BP-YOLO: A Real-Time Product Detection and Shopping Behaviors Recognition Model for Intelligent Unmanned Vending Machine</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Intelligent unmanned vending machines (UVMs) based on machine vision have attracted great attention in the unmanned retail industry. However, due to the complexity of practical application scenarios and environments, the existing vision-based intelligent UVMs face challenges related to missed-detection and mis-detection of product, and require costly physical components such as the infrared radio frequency sensors to capture shopping behaviors. In this study, we propose a BP-YOLO, the real-time model that integrates optimized YOLOv7 and BlazePose for product detection and shopping behaviors recognition. BP-YOLO can accurately detect the products purchased by consumers and their shopping behaviors in complex scenarios. To address the problems of missed-detection and mis-detection, we introduce the 3D attention mechanism SimAM and the deformable ConvNets v2 (DCNv2) to recombine and optimize the one-stage object detection model YOLOv7. This method reduces the interference of the invalid information in complex scenarios by adaptively weighting each channel and 3D spatial features, focuses on feature information in a sparse space, and minimizes the loss of feature information during the transmission process based on multi-scale feature extraction and fusion. To recognize and judge the shopping behaviors of consumers, we track the hand and arm key points of consumers using the pose estimation model BlazePose. Using the mAP@[0.5:0.95] as the evaluation metric for product detection, the experimental results on a customized product dataset show that BP-YOLO achieves an average accuracy of 96.17% for all product categories detection; the average success rate of consumer shopping recognition reaches 92%, 98%, and 94.7% under three light and noise intensity, respectively. Therefore, our BP-YOLO model for intelligent UVMs has effectiveness in commercial deployment.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3361675</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0001-9526-1523</orcidid><orcidid>https://orcid.org/0000-0002-9998-098X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024-01, Vol.12, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2024_3361675 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Autonomous systems Behavioral sciences BlazePose BP-YOLO Complexity Consumer behavior Consumers Costs Customer profiles Feature extraction Formability Infrared detectors Inventory management Luminous intensity Machine vision Noise intensity Object recognition Packaging Pose estimation product detection Real time Real-time systems Shopping shopping behaviors recognition Task analysis unmanned vending machines Vending machines YOLO |
title | BP-YOLO: A Real-Time Product Detection and Shopping Behaviors Recognition Model for Intelligent Unmanned Vending Machine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BP-YOLO:%20A%20Real-Time%20Product%20Detection%20and%20Shopping%20Behaviors%20Recognition%20Model%20for%20Intelligent%20Unmanned%20Vending%20Machine&rft.jtitle=IEEE%20access&rft.au=Li,%20Jingxiang&rft.date=2024-01-01&rft.volume=12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3361675&rft_dat=%3Cproquest_cross%3E2926267784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926267784&rft_id=info:pmid/&rft_ieee_id=10418907&rft_doaj_id=oai_doaj_org_article_9112efbd2e1444acb194196d07066d1e&rfr_iscdi=true |