BP-YOLO: A Real-Time Product Detection and Shopping Behaviors Recognition Model for Intelligent Unmanned Vending Machine

Intelligent unmanned vending machines (UVMs) based on machine vision have attracted great attention in the unmanned retail industry. However, due to the complexity of practical application scenarios and environments, the existing vision-based intelligent UVMs face challenges related to missed-detect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024-01, Vol.12, p.1-1
Hauptverfasser: Li, Jingxiang, Tang, Fuquan, Zhu, Chao, He, Shiwei, Zhang, Shujin, Su, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 12
creator Li, Jingxiang
Tang, Fuquan
Zhu, Chao
He, Shiwei
Zhang, Shujin
Su, Yu
description Intelligent unmanned vending machines (UVMs) based on machine vision have attracted great attention in the unmanned retail industry. However, due to the complexity of practical application scenarios and environments, the existing vision-based intelligent UVMs face challenges related to missed-detection and mis-detection of product, and require costly physical components such as the infrared radio frequency sensors to capture shopping behaviors. In this study, we propose a BP-YOLO, the real-time model that integrates optimized YOLOv7 and BlazePose for product detection and shopping behaviors recognition. BP-YOLO can accurately detect the products purchased by consumers and their shopping behaviors in complex scenarios. To address the problems of missed-detection and mis-detection, we introduce the 3D attention mechanism SimAM and the deformable ConvNets v2 (DCNv2) to recombine and optimize the one-stage object detection model YOLOv7. This method reduces the interference of the invalid information in complex scenarios by adaptively weighting each channel and 3D spatial features, focuses on feature information in a sparse space, and minimizes the loss of feature information during the transmission process based on multi-scale feature extraction and fusion. To recognize and judge the shopping behaviors of consumers, we track the hand and arm key points of consumers using the pose estimation model BlazePose. Using the mAP@[0.5:0.95] as the evaluation metric for product detection, the experimental results on a customized product dataset show that BP-YOLO achieves an average accuracy of 96.17% for all product categories detection; the average success rate of consumer shopping recognition reaches 92%, 98%, and 94.7% under three light and noise intensity, respectively. Therefore, our BP-YOLO model for intelligent UVMs has effectiveness in commercial deployment.
doi_str_mv 10.1109/ACCESS.2024.3361675
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3361675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10418907</ieee_id><doaj_id>oai_doaj_org_article_9112efbd2e1444acb194196d07066d1e</doaj_id><sourcerecordid>2926267784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-16bc7670d540f27250c03fdcf9abbef17e30722d51bf04936d01c096b3c877303</originalsourceid><addsrcrecordid>eNpNkU9PGzEQxVcIpCLKJ2gPlnre4H9rx9xCgDZSUFADSJwsrz1OHG3s1LtB5duzYRFiLjMavd-bkV5R_CB4RAhWF5Pp9Ga5HFFM-YgxQYSsjopTSoQqWcXE8Zf5W3Hethvc17hfVfK0-H91Xz4v5otLNEF_wTTlQ9gCus_J7W2HrqED24UUkYkOLddptwtxha5gbV5Cym2P2LSK4V1ylxw0yKeMZrGDpgkriB16jFsTIzj0BNEd4Dtj1yHC9-LEm6aF849-Vjze3jxM_5Tzxe_ZdDIvLatUVxJRWykkdhXHnkpaYYuZd9YrU9fgiQSGJaWuIrXHXDHhMLFYiZrZsZQMs7NiNvi6ZDZ6l8PW5FedTNDvi5RX2uQu2Aa0IoSCrx0Fwjk3tiaKE9U7SiyEI9B7_Rq8djn920Pb6U3a59i_r6miggopx7xXsUFlc2rbDP7zKsH6kJgeEtOHxPRHYj31c6ACAHwhOBkrLNkbgz2QwA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926267784</pqid></control><display><type>article</type><title>BP-YOLO: A Real-Time Product Detection and Shopping Behaviors Recognition Model for Intelligent Unmanned Vending Machine</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Jingxiang ; Tang, Fuquan ; Zhu, Chao ; He, Shiwei ; Zhang, Shujin ; Su, Yu</creator><creatorcontrib>Li, Jingxiang ; Tang, Fuquan ; Zhu, Chao ; He, Shiwei ; Zhang, Shujin ; Su, Yu</creatorcontrib><description>Intelligent unmanned vending machines (UVMs) based on machine vision have attracted great attention in the unmanned retail industry. However, due to the complexity of practical application scenarios and environments, the existing vision-based intelligent UVMs face challenges related to missed-detection and mis-detection of product, and require costly physical components such as the infrared radio frequency sensors to capture shopping behaviors. In this study, we propose a BP-YOLO, the real-time model that integrates optimized YOLOv7 and BlazePose for product detection and shopping behaviors recognition. BP-YOLO can accurately detect the products purchased by consumers and their shopping behaviors in complex scenarios. To address the problems of missed-detection and mis-detection, we introduce the 3D attention mechanism SimAM and the deformable ConvNets v2 (DCNv2) to recombine and optimize the one-stage object detection model YOLOv7. This method reduces the interference of the invalid information in complex scenarios by adaptively weighting each channel and 3D spatial features, focuses on feature information in a sparse space, and minimizes the loss of feature information during the transmission process based on multi-scale feature extraction and fusion. To recognize and judge the shopping behaviors of consumers, we track the hand and arm key points of consumers using the pose estimation model BlazePose. Using the mAP@[0.5:0.95] as the evaluation metric for product detection, the experimental results on a customized product dataset show that BP-YOLO achieves an average accuracy of 96.17% for all product categories detection; the average success rate of consumer shopping recognition reaches 92%, 98%, and 94.7% under three light and noise intensity, respectively. Therefore, our BP-YOLO model for intelligent UVMs has effectiveness in commercial deployment.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3361675</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Autonomous systems ; Behavioral sciences ; BlazePose ; BP-YOLO ; Complexity ; Consumer behavior ; Consumers ; Costs ; Customer profiles ; Feature extraction ; Formability ; Infrared detectors ; Inventory management ; Luminous intensity ; Machine vision ; Noise intensity ; Object recognition ; Packaging ; Pose estimation ; product detection ; Real time ; Real-time systems ; Shopping ; shopping behaviors recognition ; Task analysis ; unmanned vending machines ; Vending machines ; YOLO</subject><ispartof>IEEE access, 2024-01, Vol.12, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-16bc7670d540f27250c03fdcf9abbef17e30722d51bf04936d01c096b3c877303</cites><orcidid>0009-0001-9526-1523 ; 0000-0002-9998-098X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10418907$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Li, Jingxiang</creatorcontrib><creatorcontrib>Tang, Fuquan</creatorcontrib><creatorcontrib>Zhu, Chao</creatorcontrib><creatorcontrib>He, Shiwei</creatorcontrib><creatorcontrib>Zhang, Shujin</creatorcontrib><creatorcontrib>Su, Yu</creatorcontrib><title>BP-YOLO: A Real-Time Product Detection and Shopping Behaviors Recognition Model for Intelligent Unmanned Vending Machine</title><title>IEEE access</title><addtitle>Access</addtitle><description>Intelligent unmanned vending machines (UVMs) based on machine vision have attracted great attention in the unmanned retail industry. However, due to the complexity of practical application scenarios and environments, the existing vision-based intelligent UVMs face challenges related to missed-detection and mis-detection of product, and require costly physical components such as the infrared radio frequency sensors to capture shopping behaviors. In this study, we propose a BP-YOLO, the real-time model that integrates optimized YOLOv7 and BlazePose for product detection and shopping behaviors recognition. BP-YOLO can accurately detect the products purchased by consumers and their shopping behaviors in complex scenarios. To address the problems of missed-detection and mis-detection, we introduce the 3D attention mechanism SimAM and the deformable ConvNets v2 (DCNv2) to recombine and optimize the one-stage object detection model YOLOv7. This method reduces the interference of the invalid information in complex scenarios by adaptively weighting each channel and 3D spatial features, focuses on feature information in a sparse space, and minimizes the loss of feature information during the transmission process based on multi-scale feature extraction and fusion. To recognize and judge the shopping behaviors of consumers, we track the hand and arm key points of consumers using the pose estimation model BlazePose. Using the mAP@[0.5:0.95] as the evaluation metric for product detection, the experimental results on a customized product dataset show that BP-YOLO achieves an average accuracy of 96.17% for all product categories detection; the average success rate of consumer shopping recognition reaches 92%, 98%, and 94.7% under three light and noise intensity, respectively. Therefore, our BP-YOLO model for intelligent UVMs has effectiveness in commercial deployment.</description><subject>Autonomous systems</subject><subject>Behavioral sciences</subject><subject>BlazePose</subject><subject>BP-YOLO</subject><subject>Complexity</subject><subject>Consumer behavior</subject><subject>Consumers</subject><subject>Costs</subject><subject>Customer profiles</subject><subject>Feature extraction</subject><subject>Formability</subject><subject>Infrared detectors</subject><subject>Inventory management</subject><subject>Luminous intensity</subject><subject>Machine vision</subject><subject>Noise intensity</subject><subject>Object recognition</subject><subject>Packaging</subject><subject>Pose estimation</subject><subject>product detection</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Shopping</subject><subject>shopping behaviors recognition</subject><subject>Task analysis</subject><subject>unmanned vending machines</subject><subject>Vending machines</subject><subject>YOLO</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9PGzEQxVcIpCLKJ2gPlnre4H9rx9xCgDZSUFADSJwsrz1OHG3s1LtB5duzYRFiLjMavd-bkV5R_CB4RAhWF5Pp9Ga5HFFM-YgxQYSsjopTSoQqWcXE8Zf5W3Hethvc17hfVfK0-H91Xz4v5otLNEF_wTTlQ9gCus_J7W2HrqED24UUkYkOLddptwtxha5gbV5Cym2P2LSK4V1ylxw0yKeMZrGDpgkriB16jFsTIzj0BNEd4Dtj1yHC9-LEm6aF849-Vjze3jxM_5Tzxe_ZdDIvLatUVxJRWykkdhXHnkpaYYuZd9YrU9fgiQSGJaWuIrXHXDHhMLFYiZrZsZQMs7NiNvi6ZDZ6l8PW5FedTNDvi5RX2uQu2Aa0IoSCrx0Fwjk3tiaKE9U7SiyEI9B7_Rq8djn920Pb6U3a59i_r6miggopx7xXsUFlc2rbDP7zKsH6kJgeEtOHxPRHYj31c6ACAHwhOBkrLNkbgz2QwA</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Li, Jingxiang</creator><creator>Tang, Fuquan</creator><creator>Zhu, Chao</creator><creator>He, Shiwei</creator><creator>Zhang, Shujin</creator><creator>Su, Yu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0001-9526-1523</orcidid><orcidid>https://orcid.org/0000-0002-9998-098X</orcidid></search><sort><creationdate>20240101</creationdate><title>BP-YOLO: A Real-Time Product Detection and Shopping Behaviors Recognition Model for Intelligent Unmanned Vending Machine</title><author>Li, Jingxiang ; Tang, Fuquan ; Zhu, Chao ; He, Shiwei ; Zhang, Shujin ; Su, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-16bc7670d540f27250c03fdcf9abbef17e30722d51bf04936d01c096b3c877303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autonomous systems</topic><topic>Behavioral sciences</topic><topic>BlazePose</topic><topic>BP-YOLO</topic><topic>Complexity</topic><topic>Consumer behavior</topic><topic>Consumers</topic><topic>Costs</topic><topic>Customer profiles</topic><topic>Feature extraction</topic><topic>Formability</topic><topic>Infrared detectors</topic><topic>Inventory management</topic><topic>Luminous intensity</topic><topic>Machine vision</topic><topic>Noise intensity</topic><topic>Object recognition</topic><topic>Packaging</topic><topic>Pose estimation</topic><topic>product detection</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Shopping</topic><topic>shopping behaviors recognition</topic><topic>Task analysis</topic><topic>unmanned vending machines</topic><topic>Vending machines</topic><topic>YOLO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jingxiang</creatorcontrib><creatorcontrib>Tang, Fuquan</creatorcontrib><creatorcontrib>Zhu, Chao</creatorcontrib><creatorcontrib>He, Shiwei</creatorcontrib><creatorcontrib>Zhang, Shujin</creatorcontrib><creatorcontrib>Su, Yu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jingxiang</au><au>Tang, Fuquan</au><au>Zhu, Chao</au><au>He, Shiwei</au><au>Zhang, Shujin</au><au>Su, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BP-YOLO: A Real-Time Product Detection and Shopping Behaviors Recognition Model for Intelligent Unmanned Vending Machine</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Intelligent unmanned vending machines (UVMs) based on machine vision have attracted great attention in the unmanned retail industry. However, due to the complexity of practical application scenarios and environments, the existing vision-based intelligent UVMs face challenges related to missed-detection and mis-detection of product, and require costly physical components such as the infrared radio frequency sensors to capture shopping behaviors. In this study, we propose a BP-YOLO, the real-time model that integrates optimized YOLOv7 and BlazePose for product detection and shopping behaviors recognition. BP-YOLO can accurately detect the products purchased by consumers and their shopping behaviors in complex scenarios. To address the problems of missed-detection and mis-detection, we introduce the 3D attention mechanism SimAM and the deformable ConvNets v2 (DCNv2) to recombine and optimize the one-stage object detection model YOLOv7. This method reduces the interference of the invalid information in complex scenarios by adaptively weighting each channel and 3D spatial features, focuses on feature information in a sparse space, and minimizes the loss of feature information during the transmission process based on multi-scale feature extraction and fusion. To recognize and judge the shopping behaviors of consumers, we track the hand and arm key points of consumers using the pose estimation model BlazePose. Using the mAP@[0.5:0.95] as the evaluation metric for product detection, the experimental results on a customized product dataset show that BP-YOLO achieves an average accuracy of 96.17% for all product categories detection; the average success rate of consumer shopping recognition reaches 92%, 98%, and 94.7% under three light and noise intensity, respectively. Therefore, our BP-YOLO model for intelligent UVMs has effectiveness in commercial deployment.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3361675</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0001-9526-1523</orcidid><orcidid>https://orcid.org/0000-0002-9998-098X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024-01, Vol.12, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3361675
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Autonomous systems
Behavioral sciences
BlazePose
BP-YOLO
Complexity
Consumer behavior
Consumers
Costs
Customer profiles
Feature extraction
Formability
Infrared detectors
Inventory management
Luminous intensity
Machine vision
Noise intensity
Object recognition
Packaging
Pose estimation
product detection
Real time
Real-time systems
Shopping
shopping behaviors recognition
Task analysis
unmanned vending machines
Vending machines
YOLO
title BP-YOLO: A Real-Time Product Detection and Shopping Behaviors Recognition Model for Intelligent Unmanned Vending Machine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BP-YOLO:%20A%20Real-Time%20Product%20Detection%20and%20Shopping%20Behaviors%20Recognition%20Model%20for%20Intelligent%20Unmanned%20Vending%20Machine&rft.jtitle=IEEE%20access&rft.au=Li,%20Jingxiang&rft.date=2024-01-01&rft.volume=12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3361675&rft_dat=%3Cproquest_cross%3E2926267784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926267784&rft_id=info:pmid/&rft_ieee_id=10418907&rft_doaj_id=oai_doaj_org_article_9112efbd2e1444acb194196d07066d1e&rfr_iscdi=true