Short-Term Power Prediction by Using Least Square Support Vector Machine With Variational Mode Decomposition in a Photovoltaic System

In order to improve the accuracy of short-term photovoltaic power prediction, a comprehensively artificial intelligent (AI) based algorithm has been proposed. Firstly, a fuzzy C-means (FCM) is used to cluster historical data into different groups according to meteorological variables; Secondly, a va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023, Vol.11, p.143486-143500
Hauptverfasser: Cai, Yongxiang, Hao, Shuqing, Wen, Xiankui, Li, Hongwei, He, Xiaomeng, Chen, Lu, Ren, Jiakuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 143500
container_issue
container_start_page 143486
container_title IEEE access
container_volume 11
creator Cai, Yongxiang
Hao, Shuqing
Wen, Xiankui
Li, Hongwei
He, Xiaomeng
Chen, Lu
Ren, Jiakuan
description In order to improve the accuracy of short-term photovoltaic power prediction, a comprehensively artificial intelligent (AI) based algorithm has been proposed. Firstly, a fuzzy C-means (FCM) is used to cluster historical data into different groups according to meteorological variables; Secondly, a variational mode decomposition (VMD) is used to divide original signals into multi-frequency components as a series of intrinsic mode functions (IMF) while whale optimization algorithm (WOA) externally optimizes the parameters of VMD so as to stimulate the data processing. Least squares support vector machine (LSSVM) is adapted to build up the prediction framework with an assistance from improved sparrow search algorithm (ISSA) that aims to solve the key issues on local optimization over LSSVM training process. Under the proposed framework, practical power signals from Northwest China has been tested. The outcomes verify the effectiveness of this comprehensive algorithm. The indicator, mean absolute percentage error (MAPE), has decreased by 17.17%, 15.78% and 5.37% while R2 has increased by 0.17, 0.15 and 0.03 comparing with LSSVM, ISSA-LSSVM and VMD-LSSVM. Moreover, the study outcomes have also evidenced the superiority of ISSA over other fellow heuristic algorithms such as PSO, QPSO and SSA in both convergence speed and accuracy when an ISSA facilitates LSSVM for prediction.
doi_str_mv 10.1109/ACCESS.2023.3343103
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3343103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10360124</ieee_id><doaj_id>oai_doaj_org_article_8bfd15181a04465abe02c44d590df088</doaj_id><sourcerecordid>2906592738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-7b063ba311b8fe54fc884613f4c17ceaa90bddcf7ed47ba37a8831e6112d7ad43</originalsourceid><addsrcrecordid>eNpNkd1qGzEQhUVoIcHNE7QXglyvK-1o_y6Dk7YBhxo2SS_FrDQby9jWRpJb_AB9766zoWRuZhjOd4bhMPZZirmUovl6vVjctu08FznMARRIAWfsIpdlk0EB5Yd38zm7jHEjxqrHVVFdsL_t2oeUPVDY8ZX_Q4GvAllnkvN73h35Y3T7Z74kjIm3LwcMxNvDMIwMfyKTfOD3aNZuT_yXS2v-hMHhicUtv_eW-A0Zvxt8dK-Gbs-Rr9Y--d9-m9AZ3h5jot0n9rHHbaTLtz5jj99uHxY_suXP73eL62VmoGhSVnWihA5Byq7uqVC9qWtVSuiVkZUhxEZ01pq-IquqUVdhXYOkUsrcVmgVzNjd5Gs9bvQQ3A7DUXt0-nXhw7PGkJzZkq673spC1hKFUmWBHYncKGWLRthejL4zdjV5DcG_HCgmvfGHMD4edd6IsmjyCk4qmFQm-BgD9f-vSqFP8ekpPn2KT7_FN1JfJsoR0TsCSiFzBf8AahaX9w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906592738</pqid></control><display><type>article</type><title>Short-Term Power Prediction by Using Least Square Support Vector Machine With Variational Mode Decomposition in a Photovoltaic System</title><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Cai, Yongxiang ; Hao, Shuqing ; Wen, Xiankui ; Li, Hongwei ; He, Xiaomeng ; Chen, Lu ; Ren, Jiakuan</creator><creatorcontrib>Cai, Yongxiang ; Hao, Shuqing ; Wen, Xiankui ; Li, Hongwei ; He, Xiaomeng ; Chen, Lu ; Ren, Jiakuan</creatorcontrib><description>In order to improve the accuracy of short-term photovoltaic power prediction, a comprehensively artificial intelligent (AI) based algorithm has been proposed. Firstly, a fuzzy C-means (FCM) is used to cluster historical data into different groups according to meteorological variables; Secondly, a variational mode decomposition (VMD) is used to divide original signals into multi-frequency components as a series of intrinsic mode functions (IMF) while whale optimization algorithm (WOA) externally optimizes the parameters of VMD so as to stimulate the data processing. Least squares support vector machine (LSSVM) is adapted to build up the prediction framework with an assistance from improved sparrow search algorithm (ISSA) that aims to solve the key issues on local optimization over LSSVM training process. Under the proposed framework, practical power signals from Northwest China has been tested. The outcomes verify the effectiveness of this comprehensive algorithm. The indicator, mean absolute percentage error (MAPE), has decreased by 17.17%, 15.78% and 5.37% while R2 has increased by 0.17, 0.15 and 0.03 comparing with LSSVM, ISSA-LSSVM and VMD-LSSVM. Moreover, the study outcomes have also evidenced the superiority of ISSA over other fellow heuristic algorithms such as PSO, QPSO and SSA in both convergence speed and accuracy when an ISSA facilitates LSSVM for prediction.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3343103</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Clustering algorithms ; Data models ; Data processing ; Decomposition ; Fuzzy C-means ; Heuristic methods ; improved sparrow search algorithm ; Least squares ; least squares support vector machine ; Local optimization ; Optimization ; Prediction algorithms ; Predictive models ; Search algorithms ; short-term photovoltaic power prediction ; Support vector machines ; variational modal decomposition ; Weather forecasting ; whale optimization algorithm</subject><ispartof>IEEE access, 2023, Vol.11, p.143486-143500</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-7b063ba311b8fe54fc884613f4c17ceaa90bddcf7ed47ba37a8831e6112d7ad43</cites><orcidid>0009-0003-9830-7528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10360124$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Cai, Yongxiang</creatorcontrib><creatorcontrib>Hao, Shuqing</creatorcontrib><creatorcontrib>Wen, Xiankui</creatorcontrib><creatorcontrib>Li, Hongwei</creatorcontrib><creatorcontrib>He, Xiaomeng</creatorcontrib><creatorcontrib>Chen, Lu</creatorcontrib><creatorcontrib>Ren, Jiakuan</creatorcontrib><title>Short-Term Power Prediction by Using Least Square Support Vector Machine With Variational Mode Decomposition in a Photovoltaic System</title><title>IEEE access</title><addtitle>Access</addtitle><description>In order to improve the accuracy of short-term photovoltaic power prediction, a comprehensively artificial intelligent (AI) based algorithm has been proposed. Firstly, a fuzzy C-means (FCM) is used to cluster historical data into different groups according to meteorological variables; Secondly, a variational mode decomposition (VMD) is used to divide original signals into multi-frequency components as a series of intrinsic mode functions (IMF) while whale optimization algorithm (WOA) externally optimizes the parameters of VMD so as to stimulate the data processing. Least squares support vector machine (LSSVM) is adapted to build up the prediction framework with an assistance from improved sparrow search algorithm (ISSA) that aims to solve the key issues on local optimization over LSSVM training process. Under the proposed framework, practical power signals from Northwest China has been tested. The outcomes verify the effectiveness of this comprehensive algorithm. The indicator, mean absolute percentage error (MAPE), has decreased by 17.17%, 15.78% and 5.37% while R2 has increased by 0.17, 0.15 and 0.03 comparing with LSSVM, ISSA-LSSVM and VMD-LSSVM. Moreover, the study outcomes have also evidenced the superiority of ISSA over other fellow heuristic algorithms such as PSO, QPSO and SSA in both convergence speed and accuracy when an ISSA facilitates LSSVM for prediction.</description><subject>Algorithms</subject><subject>Clustering algorithms</subject><subject>Data models</subject><subject>Data processing</subject><subject>Decomposition</subject><subject>Fuzzy C-means</subject><subject>Heuristic methods</subject><subject>improved sparrow search algorithm</subject><subject>Least squares</subject><subject>least squares support vector machine</subject><subject>Local optimization</subject><subject>Optimization</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>Search algorithms</subject><subject>short-term photovoltaic power prediction</subject><subject>Support vector machines</subject><subject>variational modal decomposition</subject><subject>Weather forecasting</subject><subject>whale optimization algorithm</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd1qGzEQhUVoIcHNE7QXglyvK-1o_y6Dk7YBhxo2SS_FrDQby9jWRpJb_AB9766zoWRuZhjOd4bhMPZZirmUovl6vVjctu08FznMARRIAWfsIpdlk0EB5Yd38zm7jHEjxqrHVVFdsL_t2oeUPVDY8ZX_Q4GvAllnkvN73h35Y3T7Z74kjIm3LwcMxNvDMIwMfyKTfOD3aNZuT_yXS2v-hMHhicUtv_eW-A0Zvxt8dK-Gbs-Rr9Y--d9-m9AZ3h5jot0n9rHHbaTLtz5jj99uHxY_suXP73eL62VmoGhSVnWihA5Byq7uqVC9qWtVSuiVkZUhxEZ01pq-IquqUVdhXYOkUsrcVmgVzNjd5Gs9bvQQ3A7DUXt0-nXhw7PGkJzZkq673spC1hKFUmWBHYncKGWLRthejL4zdjV5DcG_HCgmvfGHMD4edd6IsmjyCk4qmFQm-BgD9f-vSqFP8ekpPn2KT7_FN1JfJsoR0TsCSiFzBf8AahaX9w</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Cai, Yongxiang</creator><creator>Hao, Shuqing</creator><creator>Wen, Xiankui</creator><creator>Li, Hongwei</creator><creator>He, Xiaomeng</creator><creator>Chen, Lu</creator><creator>Ren, Jiakuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0003-9830-7528</orcidid></search><sort><creationdate>2023</creationdate><title>Short-Term Power Prediction by Using Least Square Support Vector Machine With Variational Mode Decomposition in a Photovoltaic System</title><author>Cai, Yongxiang ; Hao, Shuqing ; Wen, Xiankui ; Li, Hongwei ; He, Xiaomeng ; Chen, Lu ; Ren, Jiakuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-7b063ba311b8fe54fc884613f4c17ceaa90bddcf7ed47ba37a8831e6112d7ad43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Clustering algorithms</topic><topic>Data models</topic><topic>Data processing</topic><topic>Decomposition</topic><topic>Fuzzy C-means</topic><topic>Heuristic methods</topic><topic>improved sparrow search algorithm</topic><topic>Least squares</topic><topic>least squares support vector machine</topic><topic>Local optimization</topic><topic>Optimization</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>Search algorithms</topic><topic>short-term photovoltaic power prediction</topic><topic>Support vector machines</topic><topic>variational modal decomposition</topic><topic>Weather forecasting</topic><topic>whale optimization algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Yongxiang</creatorcontrib><creatorcontrib>Hao, Shuqing</creatorcontrib><creatorcontrib>Wen, Xiankui</creatorcontrib><creatorcontrib>Li, Hongwei</creatorcontrib><creatorcontrib>He, Xiaomeng</creatorcontrib><creatorcontrib>Chen, Lu</creatorcontrib><creatorcontrib>Ren, Jiakuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Yongxiang</au><au>Hao, Shuqing</au><au>Wen, Xiankui</au><au>Li, Hongwei</au><au>He, Xiaomeng</au><au>Chen, Lu</au><au>Ren, Jiakuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short-Term Power Prediction by Using Least Square Support Vector Machine With Variational Mode Decomposition in a Photovoltaic System</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>143486</spage><epage>143500</epage><pages>143486-143500</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In order to improve the accuracy of short-term photovoltaic power prediction, a comprehensively artificial intelligent (AI) based algorithm has been proposed. Firstly, a fuzzy C-means (FCM) is used to cluster historical data into different groups according to meteorological variables; Secondly, a variational mode decomposition (VMD) is used to divide original signals into multi-frequency components as a series of intrinsic mode functions (IMF) while whale optimization algorithm (WOA) externally optimizes the parameters of VMD so as to stimulate the data processing. Least squares support vector machine (LSSVM) is adapted to build up the prediction framework with an assistance from improved sparrow search algorithm (ISSA) that aims to solve the key issues on local optimization over LSSVM training process. Under the proposed framework, practical power signals from Northwest China has been tested. The outcomes verify the effectiveness of this comprehensive algorithm. The indicator, mean absolute percentage error (MAPE), has decreased by 17.17%, 15.78% and 5.37% while R2 has increased by 0.17, 0.15 and 0.03 comparing with LSSVM, ISSA-LSSVM and VMD-LSSVM. Moreover, the study outcomes have also evidenced the superiority of ISSA over other fellow heuristic algorithms such as PSO, QPSO and SSA in both convergence speed and accuracy when an ISSA facilitates LSSVM for prediction.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3343103</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0003-9830-7528</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023, Vol.11, p.143486-143500
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2023_3343103
source DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library
subjects Algorithms
Clustering algorithms
Data models
Data processing
Decomposition
Fuzzy C-means
Heuristic methods
improved sparrow search algorithm
Least squares
least squares support vector machine
Local optimization
Optimization
Prediction algorithms
Predictive models
Search algorithms
short-term photovoltaic power prediction
Support vector machines
variational modal decomposition
Weather forecasting
whale optimization algorithm
title Short-Term Power Prediction by Using Least Square Support Vector Machine With Variational Mode Decomposition in a Photovoltaic System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A13%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short-Term%20Power%20Prediction%20by%20Using%20Least%20Square%20Support%20Vector%20Machine%20With%20Variational%20Mode%20Decomposition%20in%20a%20Photovoltaic%20System&rft.jtitle=IEEE%20access&rft.au=Cai,%20Yongxiang&rft.date=2023&rft.volume=11&rft.spage=143486&rft.epage=143500&rft.pages=143486-143500&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3343103&rft_dat=%3Cproquest_cross%3E2906592738%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2906592738&rft_id=info:pmid/&rft_ieee_id=10360124&rft_doaj_id=oai_doaj_org_article_8bfd15181a04465abe02c44d590df088&rfr_iscdi=true