Short-Term Power Prediction by Using Least Square Support Vector Machine With Variational Mode Decomposition in a Photovoltaic System
In order to improve the accuracy of short-term photovoltaic power prediction, a comprehensively artificial intelligent (AI) based algorithm has been proposed. Firstly, a fuzzy C-means (FCM) is used to cluster historical data into different groups according to meteorological variables; Secondly, a va...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023, Vol.11, p.143486-143500 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 143500 |
---|---|
container_issue | |
container_start_page | 143486 |
container_title | IEEE access |
container_volume | 11 |
creator | Cai, Yongxiang Hao, Shuqing Wen, Xiankui Li, Hongwei He, Xiaomeng Chen, Lu Ren, Jiakuan |
description | In order to improve the accuracy of short-term photovoltaic power prediction, a comprehensively artificial intelligent (AI) based algorithm has been proposed. Firstly, a fuzzy C-means (FCM) is used to cluster historical data into different groups according to meteorological variables; Secondly, a variational mode decomposition (VMD) is used to divide original signals into multi-frequency components as a series of intrinsic mode functions (IMF) while whale optimization algorithm (WOA) externally optimizes the parameters of VMD so as to stimulate the data processing. Least squares support vector machine (LSSVM) is adapted to build up the prediction framework with an assistance from improved sparrow search algorithm (ISSA) that aims to solve the key issues on local optimization over LSSVM training process. Under the proposed framework, practical power signals from Northwest China has been tested. The outcomes verify the effectiveness of this comprehensive algorithm. The indicator, mean absolute percentage error (MAPE), has decreased by 17.17%, 15.78% and 5.37% while R2 has increased by 0.17, 0.15 and 0.03 comparing with LSSVM, ISSA-LSSVM and VMD-LSSVM. Moreover, the study outcomes have also evidenced the superiority of ISSA over other fellow heuristic algorithms such as PSO, QPSO and SSA in both convergence speed and accuracy when an ISSA facilitates LSSVM for prediction. |
doi_str_mv | 10.1109/ACCESS.2023.3343103 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3343103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10360124</ieee_id><doaj_id>oai_doaj_org_article_8bfd15181a04465abe02c44d590df088</doaj_id><sourcerecordid>2906592738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-7b063ba311b8fe54fc884613f4c17ceaa90bddcf7ed47ba37a8831e6112d7ad43</originalsourceid><addsrcrecordid>eNpNkd1qGzEQhUVoIcHNE7QXglyvK-1o_y6Dk7YBhxo2SS_FrDQby9jWRpJb_AB9766zoWRuZhjOd4bhMPZZirmUovl6vVjctu08FznMARRIAWfsIpdlk0EB5Yd38zm7jHEjxqrHVVFdsL_t2oeUPVDY8ZX_Q4GvAllnkvN73h35Y3T7Z74kjIm3LwcMxNvDMIwMfyKTfOD3aNZuT_yXS2v-hMHhicUtv_eW-A0Zvxt8dK-Gbs-Rr9Y--d9-m9AZ3h5jot0n9rHHbaTLtz5jj99uHxY_suXP73eL62VmoGhSVnWihA5Byq7uqVC9qWtVSuiVkZUhxEZ01pq-IquqUVdhXYOkUsrcVmgVzNjd5Gs9bvQQ3A7DUXt0-nXhw7PGkJzZkq673spC1hKFUmWBHYncKGWLRthejL4zdjV5DcG_HCgmvfGHMD4edd6IsmjyCk4qmFQm-BgD9f-vSqFP8ekpPn2KT7_FN1JfJsoR0TsCSiFzBf8AahaX9w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906592738</pqid></control><display><type>article</type><title>Short-Term Power Prediction by Using Least Square Support Vector Machine With Variational Mode Decomposition in a Photovoltaic System</title><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Cai, Yongxiang ; Hao, Shuqing ; Wen, Xiankui ; Li, Hongwei ; He, Xiaomeng ; Chen, Lu ; Ren, Jiakuan</creator><creatorcontrib>Cai, Yongxiang ; Hao, Shuqing ; Wen, Xiankui ; Li, Hongwei ; He, Xiaomeng ; Chen, Lu ; Ren, Jiakuan</creatorcontrib><description>In order to improve the accuracy of short-term photovoltaic power prediction, a comprehensively artificial intelligent (AI) based algorithm has been proposed. Firstly, a fuzzy C-means (FCM) is used to cluster historical data into different groups according to meteorological variables; Secondly, a variational mode decomposition (VMD) is used to divide original signals into multi-frequency components as a series of intrinsic mode functions (IMF) while whale optimization algorithm (WOA) externally optimizes the parameters of VMD so as to stimulate the data processing. Least squares support vector machine (LSSVM) is adapted to build up the prediction framework with an assistance from improved sparrow search algorithm (ISSA) that aims to solve the key issues on local optimization over LSSVM training process. Under the proposed framework, practical power signals from Northwest China has been tested. The outcomes verify the effectiveness of this comprehensive algorithm. The indicator, mean absolute percentage error (MAPE), has decreased by 17.17%, 15.78% and 5.37% while R2 has increased by 0.17, 0.15 and 0.03 comparing with LSSVM, ISSA-LSSVM and VMD-LSSVM. Moreover, the study outcomes have also evidenced the superiority of ISSA over other fellow heuristic algorithms such as PSO, QPSO and SSA in both convergence speed and accuracy when an ISSA facilitates LSSVM for prediction.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3343103</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Clustering algorithms ; Data models ; Data processing ; Decomposition ; Fuzzy C-means ; Heuristic methods ; improved sparrow search algorithm ; Least squares ; least squares support vector machine ; Local optimization ; Optimization ; Prediction algorithms ; Predictive models ; Search algorithms ; short-term photovoltaic power prediction ; Support vector machines ; variational modal decomposition ; Weather forecasting ; whale optimization algorithm</subject><ispartof>IEEE access, 2023, Vol.11, p.143486-143500</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-7b063ba311b8fe54fc884613f4c17ceaa90bddcf7ed47ba37a8831e6112d7ad43</cites><orcidid>0009-0003-9830-7528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10360124$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Cai, Yongxiang</creatorcontrib><creatorcontrib>Hao, Shuqing</creatorcontrib><creatorcontrib>Wen, Xiankui</creatorcontrib><creatorcontrib>Li, Hongwei</creatorcontrib><creatorcontrib>He, Xiaomeng</creatorcontrib><creatorcontrib>Chen, Lu</creatorcontrib><creatorcontrib>Ren, Jiakuan</creatorcontrib><title>Short-Term Power Prediction by Using Least Square Support Vector Machine With Variational Mode Decomposition in a Photovoltaic System</title><title>IEEE access</title><addtitle>Access</addtitle><description>In order to improve the accuracy of short-term photovoltaic power prediction, a comprehensively artificial intelligent (AI) based algorithm has been proposed. Firstly, a fuzzy C-means (FCM) is used to cluster historical data into different groups according to meteorological variables; Secondly, a variational mode decomposition (VMD) is used to divide original signals into multi-frequency components as a series of intrinsic mode functions (IMF) while whale optimization algorithm (WOA) externally optimizes the parameters of VMD so as to stimulate the data processing. Least squares support vector machine (LSSVM) is adapted to build up the prediction framework with an assistance from improved sparrow search algorithm (ISSA) that aims to solve the key issues on local optimization over LSSVM training process. Under the proposed framework, practical power signals from Northwest China has been tested. The outcomes verify the effectiveness of this comprehensive algorithm. The indicator, mean absolute percentage error (MAPE), has decreased by 17.17%, 15.78% and 5.37% while R2 has increased by 0.17, 0.15 and 0.03 comparing with LSSVM, ISSA-LSSVM and VMD-LSSVM. Moreover, the study outcomes have also evidenced the superiority of ISSA over other fellow heuristic algorithms such as PSO, QPSO and SSA in both convergence speed and accuracy when an ISSA facilitates LSSVM for prediction.</description><subject>Algorithms</subject><subject>Clustering algorithms</subject><subject>Data models</subject><subject>Data processing</subject><subject>Decomposition</subject><subject>Fuzzy C-means</subject><subject>Heuristic methods</subject><subject>improved sparrow search algorithm</subject><subject>Least squares</subject><subject>least squares support vector machine</subject><subject>Local optimization</subject><subject>Optimization</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>Search algorithms</subject><subject>short-term photovoltaic power prediction</subject><subject>Support vector machines</subject><subject>variational modal decomposition</subject><subject>Weather forecasting</subject><subject>whale optimization algorithm</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd1qGzEQhUVoIcHNE7QXglyvK-1o_y6Dk7YBhxo2SS_FrDQby9jWRpJb_AB9766zoWRuZhjOd4bhMPZZirmUovl6vVjctu08FznMARRIAWfsIpdlk0EB5Yd38zm7jHEjxqrHVVFdsL_t2oeUPVDY8ZX_Q4GvAllnkvN73h35Y3T7Z74kjIm3LwcMxNvDMIwMfyKTfOD3aNZuT_yXS2v-hMHhicUtv_eW-A0Zvxt8dK-Gbs-Rr9Y--d9-m9AZ3h5jot0n9rHHbaTLtz5jj99uHxY_suXP73eL62VmoGhSVnWihA5Byq7uqVC9qWtVSuiVkZUhxEZ01pq-IquqUVdhXYOkUsrcVmgVzNjd5Gs9bvQQ3A7DUXt0-nXhw7PGkJzZkq673spC1hKFUmWBHYncKGWLRthejL4zdjV5DcG_HCgmvfGHMD4edd6IsmjyCk4qmFQm-BgD9f-vSqFP8ekpPn2KT7_FN1JfJsoR0TsCSiFzBf8AahaX9w</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Cai, Yongxiang</creator><creator>Hao, Shuqing</creator><creator>Wen, Xiankui</creator><creator>Li, Hongwei</creator><creator>He, Xiaomeng</creator><creator>Chen, Lu</creator><creator>Ren, Jiakuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0003-9830-7528</orcidid></search><sort><creationdate>2023</creationdate><title>Short-Term Power Prediction by Using Least Square Support Vector Machine With Variational Mode Decomposition in a Photovoltaic System</title><author>Cai, Yongxiang ; Hao, Shuqing ; Wen, Xiankui ; Li, Hongwei ; He, Xiaomeng ; Chen, Lu ; Ren, Jiakuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-7b063ba311b8fe54fc884613f4c17ceaa90bddcf7ed47ba37a8831e6112d7ad43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Clustering algorithms</topic><topic>Data models</topic><topic>Data processing</topic><topic>Decomposition</topic><topic>Fuzzy C-means</topic><topic>Heuristic methods</topic><topic>improved sparrow search algorithm</topic><topic>Least squares</topic><topic>least squares support vector machine</topic><topic>Local optimization</topic><topic>Optimization</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>Search algorithms</topic><topic>short-term photovoltaic power prediction</topic><topic>Support vector machines</topic><topic>variational modal decomposition</topic><topic>Weather forecasting</topic><topic>whale optimization algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Yongxiang</creatorcontrib><creatorcontrib>Hao, Shuqing</creatorcontrib><creatorcontrib>Wen, Xiankui</creatorcontrib><creatorcontrib>Li, Hongwei</creatorcontrib><creatorcontrib>He, Xiaomeng</creatorcontrib><creatorcontrib>Chen, Lu</creatorcontrib><creatorcontrib>Ren, Jiakuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Yongxiang</au><au>Hao, Shuqing</au><au>Wen, Xiankui</au><au>Li, Hongwei</au><au>He, Xiaomeng</au><au>Chen, Lu</au><au>Ren, Jiakuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short-Term Power Prediction by Using Least Square Support Vector Machine With Variational Mode Decomposition in a Photovoltaic System</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>143486</spage><epage>143500</epage><pages>143486-143500</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In order to improve the accuracy of short-term photovoltaic power prediction, a comprehensively artificial intelligent (AI) based algorithm has been proposed. Firstly, a fuzzy C-means (FCM) is used to cluster historical data into different groups according to meteorological variables; Secondly, a variational mode decomposition (VMD) is used to divide original signals into multi-frequency components as a series of intrinsic mode functions (IMF) while whale optimization algorithm (WOA) externally optimizes the parameters of VMD so as to stimulate the data processing. Least squares support vector machine (LSSVM) is adapted to build up the prediction framework with an assistance from improved sparrow search algorithm (ISSA) that aims to solve the key issues on local optimization over LSSVM training process. Under the proposed framework, practical power signals from Northwest China has been tested. The outcomes verify the effectiveness of this comprehensive algorithm. The indicator, mean absolute percentage error (MAPE), has decreased by 17.17%, 15.78% and 5.37% while R2 has increased by 0.17, 0.15 and 0.03 comparing with LSSVM, ISSA-LSSVM and VMD-LSSVM. Moreover, the study outcomes have also evidenced the superiority of ISSA over other fellow heuristic algorithms such as PSO, QPSO and SSA in both convergence speed and accuracy when an ISSA facilitates LSSVM for prediction.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3343103</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0003-9830-7528</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023, Vol.11, p.143486-143500 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2023_3343103 |
source | DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library |
subjects | Algorithms Clustering algorithms Data models Data processing Decomposition Fuzzy C-means Heuristic methods improved sparrow search algorithm Least squares least squares support vector machine Local optimization Optimization Prediction algorithms Predictive models Search algorithms short-term photovoltaic power prediction Support vector machines variational modal decomposition Weather forecasting whale optimization algorithm |
title | Short-Term Power Prediction by Using Least Square Support Vector Machine With Variational Mode Decomposition in a Photovoltaic System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A13%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short-Term%20Power%20Prediction%20by%20Using%20Least%20Square%20Support%20Vector%20Machine%20With%20Variational%20Mode%20Decomposition%20in%20a%20Photovoltaic%20System&rft.jtitle=IEEE%20access&rft.au=Cai,%20Yongxiang&rft.date=2023&rft.volume=11&rft.spage=143486&rft.epage=143500&rft.pages=143486-143500&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3343103&rft_dat=%3Cproquest_cross%3E2906592738%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2906592738&rft_id=info:pmid/&rft_ieee_id=10360124&rft_doaj_id=oai_doaj_org_article_8bfd15181a04465abe02c44d590df088&rfr_iscdi=true |