A Triple Unlocking Mechanism Model Against Forging Signature Attack Based on Multivariate Polynomial Public Key Cryptosystem

Since the original signature model did not account for the possible threat of the forging signature attack, the majority of existing multivariate polynomial public key based signature schemes are at risk of forging signatures by equivalent key attacks. In this research, an enhanced signature model,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023, Vol.11, p.134614-134622
Hauptverfasser: Hou, Yongyan, Dong, Baiyang, Guo, Wenqiang, Wang, Xin, Xiao, Qinkun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 134622
container_issue
container_start_page 134614
container_title IEEE access
container_volume 11
creator Hou, Yongyan
Dong, Baiyang
Guo, Wenqiang
Wang, Xin
Xiao, Qinkun
description Since the original signature model did not account for the possible threat of the forging signature attack, the majority of existing multivariate polynomial public key based signature schemes are at risk of forging signatures by equivalent key attacks. In this research, an enhanced signature model, Triple Unlocking Mechanism (TUM), is provided to resist all the possibility that the signature generated by the equivalent keys. The additional public keys are generated in the sake of enhancing the security by verifying internal unit information in the scheme after three designed unlocking operations. As a result, the signature can only be generated by the user who has the real legal key and the threat of the key recovery attack can be eliminated. The security of TUM signature based on random oracle model is proved. Experimental results demonstrate that, using an MI system coupled with TUM as an example, the advantages of the enhanced signature model are more secure than the original one at the expense of taking a little more time for signing. Moreover, influences of different parameters in multivariate polynomial public key signatures are investigated. Based on the original state-of-art model, the presented model is generic construction and applicable for existing multivariate signature scheme's construction.
doi_str_mv 10.1109/ACCESS.2023.3338025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3338025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10335667</ieee_id><doaj_id>oai_doaj_org_article_58bc457bd3af493ca5ff94f4c4780956</doaj_id><sourcerecordid>2899200534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-2d89ecb1fd6f6b9d4c9c1d724a1d8b440c5b2cfa662dc5bf1269fdce7aad876f3</originalsourceid><addsrcrecordid>eNpNUU1r3DAQNaWFhDS_oDkIet6NrC9bR9ckTWiWBjY5i7E-ttp4ra0kBwz98fXWoWQuM7yZ92aGVxRfSrwuSyyvm7a92W7XBBO6ppTWmPAPxTkphVxRTsXHd_VZcZnSHs9RzxCvzos_DXqK_thb9Dz0Qb_4YYc2Vv-CwacD2gRje9TswA8po9sQd6f-1u8GyGO0qMkZ9Av6BskaFAa0GfvsXyF6yBY9hn4awsFDjx7Hrvca_bATauN0zCFNKdvD5-KTgz7Zy7d8UTzf3jy1d6uHn9_v2-ZhpSmXeUVMLa3uSmeEE500TEtdmoowKE3dMYY174h2IAQxc-lKIqQz2lYApq6EoxfF_aJrAuzVMfoDxEkF8OofML-lIGave6t43WnGq85QcExSDdw5yRzTrKqx5GLW-rpoHWP4PdqU1T6McZjPV6SWkmDMKZun6DKlY0gpWvd_a4nVyTW1uKZOrqk312bW1cLy1tp3DEq5EBX9Cyo6ldM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899200534</pqid></control><display><type>article</type><title>A Triple Unlocking Mechanism Model Against Forging Signature Attack Based on Multivariate Polynomial Public Key Cryptosystem</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hou, Yongyan ; Dong, Baiyang ; Guo, Wenqiang ; Wang, Xin ; Xiao, Qinkun</creator><creatorcontrib>Hou, Yongyan ; Dong, Baiyang ; Guo, Wenqiang ; Wang, Xin ; Xiao, Qinkun</creatorcontrib><description>Since the original signature model did not account for the possible threat of the forging signature attack, the majority of existing multivariate polynomial public key based signature schemes are at risk of forging signatures by equivalent key attacks. In this research, an enhanced signature model, Triple Unlocking Mechanism (TUM), is provided to resist all the possibility that the signature generated by the equivalent keys. The additional public keys are generated in the sake of enhancing the security by verifying internal unit information in the scheme after three designed unlocking operations. As a result, the signature can only be generated by the user who has the real legal key and the threat of the key recovery attack can be eliminated. The security of TUM signature based on random oracle model is proved. Experimental results demonstrate that, using an MI system coupled with TUM as an example, the advantages of the enhanced signature model are more secure than the original one at the expense of taking a little more time for signing. Moreover, influences of different parameters in multivariate polynomial public key signatures are investigated. Based on the original state-of-art model, the presented model is generic construction and applicable for existing multivariate signature scheme's construction.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3338025</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cryptography ; Equivalence ; equivalent key attack ; Forging ; Galois fields ; Mathematical models ; Multivariate analysis ; Multivariate polynomial ; Polynomials ; public key ; Public key cryptography ; Resistance ; Security ; signature ; Signatures ; Solid modeling ; Wireless sensor networks</subject><ispartof>IEEE access, 2023, Vol.11, p.134614-134622</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-2d89ecb1fd6f6b9d4c9c1d724a1d8b440c5b2cfa662dc5bf1269fdce7aad876f3</cites><orcidid>0000-0001-8601-2229 ; 0009-0004-0500-4489 ; 0000-0003-1904-7821 ; 0000-0002-2651-1218 ; 0000-0002-6283-791X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10335667$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Hou, Yongyan</creatorcontrib><creatorcontrib>Dong, Baiyang</creatorcontrib><creatorcontrib>Guo, Wenqiang</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Xiao, Qinkun</creatorcontrib><title>A Triple Unlocking Mechanism Model Against Forging Signature Attack Based on Multivariate Polynomial Public Key Cryptosystem</title><title>IEEE access</title><addtitle>Access</addtitle><description>Since the original signature model did not account for the possible threat of the forging signature attack, the majority of existing multivariate polynomial public key based signature schemes are at risk of forging signatures by equivalent key attacks. In this research, an enhanced signature model, Triple Unlocking Mechanism (TUM), is provided to resist all the possibility that the signature generated by the equivalent keys. The additional public keys are generated in the sake of enhancing the security by verifying internal unit information in the scheme after three designed unlocking operations. As a result, the signature can only be generated by the user who has the real legal key and the threat of the key recovery attack can be eliminated. The security of TUM signature based on random oracle model is proved. Experimental results demonstrate that, using an MI system coupled with TUM as an example, the advantages of the enhanced signature model are more secure than the original one at the expense of taking a little more time for signing. Moreover, influences of different parameters in multivariate polynomial public key signatures are investigated. Based on the original state-of-art model, the presented model is generic construction and applicable for existing multivariate signature scheme's construction.</description><subject>Cryptography</subject><subject>Equivalence</subject><subject>equivalent key attack</subject><subject>Forging</subject><subject>Galois fields</subject><subject>Mathematical models</subject><subject>Multivariate analysis</subject><subject>Multivariate polynomial</subject><subject>Polynomials</subject><subject>public key</subject><subject>Public key cryptography</subject><subject>Resistance</subject><subject>Security</subject><subject>signature</subject><subject>Signatures</subject><subject>Solid modeling</subject><subject>Wireless sensor networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAQNaWFhDS_oDkIet6NrC9bR9ckTWiWBjY5i7E-ttp4ra0kBwz98fXWoWQuM7yZ92aGVxRfSrwuSyyvm7a92W7XBBO6ppTWmPAPxTkphVxRTsXHd_VZcZnSHs9RzxCvzos_DXqK_thb9Dz0Qb_4YYc2Vv-CwacD2gRje9TswA8po9sQd6f-1u8GyGO0qMkZ9Av6BskaFAa0GfvsXyF6yBY9hn4awsFDjx7Hrvca_bATauN0zCFNKdvD5-KTgz7Zy7d8UTzf3jy1d6uHn9_v2-ZhpSmXeUVMLa3uSmeEE500TEtdmoowKE3dMYY174h2IAQxc-lKIqQz2lYApq6EoxfF_aJrAuzVMfoDxEkF8OofML-lIGave6t43WnGq85QcExSDdw5yRzTrKqx5GLW-rpoHWP4PdqU1T6McZjPV6SWkmDMKZun6DKlY0gpWvd_a4nVyTW1uKZOrqk312bW1cLy1tp3DEq5EBX9Cyo6ldM</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Hou, Yongyan</creator><creator>Dong, Baiyang</creator><creator>Guo, Wenqiang</creator><creator>Wang, Xin</creator><creator>Xiao, Qinkun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8601-2229</orcidid><orcidid>https://orcid.org/0009-0004-0500-4489</orcidid><orcidid>https://orcid.org/0000-0003-1904-7821</orcidid><orcidid>https://orcid.org/0000-0002-2651-1218</orcidid><orcidid>https://orcid.org/0000-0002-6283-791X</orcidid></search><sort><creationdate>2023</creationdate><title>A Triple Unlocking Mechanism Model Against Forging Signature Attack Based on Multivariate Polynomial Public Key Cryptosystem</title><author>Hou, Yongyan ; Dong, Baiyang ; Guo, Wenqiang ; Wang, Xin ; Xiao, Qinkun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-2d89ecb1fd6f6b9d4c9c1d724a1d8b440c5b2cfa662dc5bf1269fdce7aad876f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cryptography</topic><topic>Equivalence</topic><topic>equivalent key attack</topic><topic>Forging</topic><topic>Galois fields</topic><topic>Mathematical models</topic><topic>Multivariate analysis</topic><topic>Multivariate polynomial</topic><topic>Polynomials</topic><topic>public key</topic><topic>Public key cryptography</topic><topic>Resistance</topic><topic>Security</topic><topic>signature</topic><topic>Signatures</topic><topic>Solid modeling</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Yongyan</creatorcontrib><creatorcontrib>Dong, Baiyang</creatorcontrib><creatorcontrib>Guo, Wenqiang</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Xiao, Qinkun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Yongyan</au><au>Dong, Baiyang</au><au>Guo, Wenqiang</au><au>Wang, Xin</au><au>Xiao, Qinkun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Triple Unlocking Mechanism Model Against Forging Signature Attack Based on Multivariate Polynomial Public Key Cryptosystem</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>134614</spage><epage>134622</epage><pages>134614-134622</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Since the original signature model did not account for the possible threat of the forging signature attack, the majority of existing multivariate polynomial public key based signature schemes are at risk of forging signatures by equivalent key attacks. In this research, an enhanced signature model, Triple Unlocking Mechanism (TUM), is provided to resist all the possibility that the signature generated by the equivalent keys. The additional public keys are generated in the sake of enhancing the security by verifying internal unit information in the scheme after three designed unlocking operations. As a result, the signature can only be generated by the user who has the real legal key and the threat of the key recovery attack can be eliminated. The security of TUM signature based on random oracle model is proved. Experimental results demonstrate that, using an MI system coupled with TUM as an example, the advantages of the enhanced signature model are more secure than the original one at the expense of taking a little more time for signing. Moreover, influences of different parameters in multivariate polynomial public key signatures are investigated. Based on the original state-of-art model, the presented model is generic construction and applicable for existing multivariate signature scheme's construction.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3338025</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8601-2229</orcidid><orcidid>https://orcid.org/0009-0004-0500-4489</orcidid><orcidid>https://orcid.org/0000-0003-1904-7821</orcidid><orcidid>https://orcid.org/0000-0002-2651-1218</orcidid><orcidid>https://orcid.org/0000-0002-6283-791X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023, Vol.11, p.134614-134622
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2023_3338025
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Cryptography
Equivalence
equivalent key attack
Forging
Galois fields
Mathematical models
Multivariate analysis
Multivariate polynomial
Polynomials
public key
Public key cryptography
Resistance
Security
signature
Signatures
Solid modeling
Wireless sensor networks
title A Triple Unlocking Mechanism Model Against Forging Signature Attack Based on Multivariate Polynomial Public Key Cryptosystem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A33%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Triple%20Unlocking%20Mechanism%20Model%20Against%20Forging%20Signature%20Attack%20Based%20on%20Multivariate%20Polynomial%20Public%20Key%20Cryptosystem&rft.jtitle=IEEE%20access&rft.au=Hou,%20Yongyan&rft.date=2023&rft.volume=11&rft.spage=134614&rft.epage=134622&rft.pages=134614-134622&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3338025&rft_dat=%3Cproquest_cross%3E2899200534%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899200534&rft_id=info:pmid/&rft_ieee_id=10335667&rft_doaj_id=oai_doaj_org_article_58bc457bd3af493ca5ff94f4c4780956&rfr_iscdi=true