A Triple Unlocking Mechanism Model Against Forging Signature Attack Based on Multivariate Polynomial Public Key Cryptosystem
Since the original signature model did not account for the possible threat of the forging signature attack, the majority of existing multivariate polynomial public key based signature schemes are at risk of forging signatures by equivalent key attacks. In this research, an enhanced signature model,...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023, Vol.11, p.134614-134622 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 134622 |
---|---|
container_issue | |
container_start_page | 134614 |
container_title | IEEE access |
container_volume | 11 |
creator | Hou, Yongyan Dong, Baiyang Guo, Wenqiang Wang, Xin Xiao, Qinkun |
description | Since the original signature model did not account for the possible threat of the forging signature attack, the majority of existing multivariate polynomial public key based signature schemes are at risk of forging signatures by equivalent key attacks. In this research, an enhanced signature model, Triple Unlocking Mechanism (TUM), is provided to resist all the possibility that the signature generated by the equivalent keys. The additional public keys are generated in the sake of enhancing the security by verifying internal unit information in the scheme after three designed unlocking operations. As a result, the signature can only be generated by the user who has the real legal key and the threat of the key recovery attack can be eliminated. The security of TUM signature based on random oracle model is proved. Experimental results demonstrate that, using an MI system coupled with TUM as an example, the advantages of the enhanced signature model are more secure than the original one at the expense of taking a little more time for signing. Moreover, influences of different parameters in multivariate polynomial public key signatures are investigated. Based on the original state-of-art model, the presented model is generic construction and applicable for existing multivariate signature scheme's construction. |
doi_str_mv | 10.1109/ACCESS.2023.3338025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3338025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10335667</ieee_id><doaj_id>oai_doaj_org_article_58bc457bd3af493ca5ff94f4c4780956</doaj_id><sourcerecordid>2899200534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-2d89ecb1fd6f6b9d4c9c1d724a1d8b440c5b2cfa662dc5bf1269fdce7aad876f3</originalsourceid><addsrcrecordid>eNpNUU1r3DAQNaWFhDS_oDkIet6NrC9bR9ckTWiWBjY5i7E-ttp4ra0kBwz98fXWoWQuM7yZ92aGVxRfSrwuSyyvm7a92W7XBBO6ppTWmPAPxTkphVxRTsXHd_VZcZnSHs9RzxCvzos_DXqK_thb9Dz0Qb_4YYc2Vv-CwacD2gRje9TswA8po9sQd6f-1u8GyGO0qMkZ9Av6BskaFAa0GfvsXyF6yBY9hn4awsFDjx7Hrvca_bATauN0zCFNKdvD5-KTgz7Zy7d8UTzf3jy1d6uHn9_v2-ZhpSmXeUVMLa3uSmeEE500TEtdmoowKE3dMYY174h2IAQxc-lKIqQz2lYApq6EoxfF_aJrAuzVMfoDxEkF8OofML-lIGave6t43WnGq85QcExSDdw5yRzTrKqx5GLW-rpoHWP4PdqU1T6McZjPV6SWkmDMKZun6DKlY0gpWvd_a4nVyTW1uKZOrqk312bW1cLy1tp3DEq5EBX9Cyo6ldM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899200534</pqid></control><display><type>article</type><title>A Triple Unlocking Mechanism Model Against Forging Signature Attack Based on Multivariate Polynomial Public Key Cryptosystem</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hou, Yongyan ; Dong, Baiyang ; Guo, Wenqiang ; Wang, Xin ; Xiao, Qinkun</creator><creatorcontrib>Hou, Yongyan ; Dong, Baiyang ; Guo, Wenqiang ; Wang, Xin ; Xiao, Qinkun</creatorcontrib><description>Since the original signature model did not account for the possible threat of the forging signature attack, the majority of existing multivariate polynomial public key based signature schemes are at risk of forging signatures by equivalent key attacks. In this research, an enhanced signature model, Triple Unlocking Mechanism (TUM), is provided to resist all the possibility that the signature generated by the equivalent keys. The additional public keys are generated in the sake of enhancing the security by verifying internal unit information in the scheme after three designed unlocking operations. As a result, the signature can only be generated by the user who has the real legal key and the threat of the key recovery attack can be eliminated. The security of TUM signature based on random oracle model is proved. Experimental results demonstrate that, using an MI system coupled with TUM as an example, the advantages of the enhanced signature model are more secure than the original one at the expense of taking a little more time for signing. Moreover, influences of different parameters in multivariate polynomial public key signatures are investigated. Based on the original state-of-art model, the presented model is generic construction and applicable for existing multivariate signature scheme's construction.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3338025</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cryptography ; Equivalence ; equivalent key attack ; Forging ; Galois fields ; Mathematical models ; Multivariate analysis ; Multivariate polynomial ; Polynomials ; public key ; Public key cryptography ; Resistance ; Security ; signature ; Signatures ; Solid modeling ; Wireless sensor networks</subject><ispartof>IEEE access, 2023, Vol.11, p.134614-134622</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-2d89ecb1fd6f6b9d4c9c1d724a1d8b440c5b2cfa662dc5bf1269fdce7aad876f3</cites><orcidid>0000-0001-8601-2229 ; 0009-0004-0500-4489 ; 0000-0003-1904-7821 ; 0000-0002-2651-1218 ; 0000-0002-6283-791X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10335667$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Hou, Yongyan</creatorcontrib><creatorcontrib>Dong, Baiyang</creatorcontrib><creatorcontrib>Guo, Wenqiang</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Xiao, Qinkun</creatorcontrib><title>A Triple Unlocking Mechanism Model Against Forging Signature Attack Based on Multivariate Polynomial Public Key Cryptosystem</title><title>IEEE access</title><addtitle>Access</addtitle><description>Since the original signature model did not account for the possible threat of the forging signature attack, the majority of existing multivariate polynomial public key based signature schemes are at risk of forging signatures by equivalent key attacks. In this research, an enhanced signature model, Triple Unlocking Mechanism (TUM), is provided to resist all the possibility that the signature generated by the equivalent keys. The additional public keys are generated in the sake of enhancing the security by verifying internal unit information in the scheme after three designed unlocking operations. As a result, the signature can only be generated by the user who has the real legal key and the threat of the key recovery attack can be eliminated. The security of TUM signature based on random oracle model is proved. Experimental results demonstrate that, using an MI system coupled with TUM as an example, the advantages of the enhanced signature model are more secure than the original one at the expense of taking a little more time for signing. Moreover, influences of different parameters in multivariate polynomial public key signatures are investigated. Based on the original state-of-art model, the presented model is generic construction and applicable for existing multivariate signature scheme's construction.</description><subject>Cryptography</subject><subject>Equivalence</subject><subject>equivalent key attack</subject><subject>Forging</subject><subject>Galois fields</subject><subject>Mathematical models</subject><subject>Multivariate analysis</subject><subject>Multivariate polynomial</subject><subject>Polynomials</subject><subject>public key</subject><subject>Public key cryptography</subject><subject>Resistance</subject><subject>Security</subject><subject>signature</subject><subject>Signatures</subject><subject>Solid modeling</subject><subject>Wireless sensor networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAQNaWFhDS_oDkIet6NrC9bR9ckTWiWBjY5i7E-ttp4ra0kBwz98fXWoWQuM7yZ92aGVxRfSrwuSyyvm7a92W7XBBO6ppTWmPAPxTkphVxRTsXHd_VZcZnSHs9RzxCvzos_DXqK_thb9Dz0Qb_4YYc2Vv-CwacD2gRje9TswA8po9sQd6f-1u8GyGO0qMkZ9Av6BskaFAa0GfvsXyF6yBY9hn4awsFDjx7Hrvca_bATauN0zCFNKdvD5-KTgz7Zy7d8UTzf3jy1d6uHn9_v2-ZhpSmXeUVMLa3uSmeEE500TEtdmoowKE3dMYY174h2IAQxc-lKIqQz2lYApq6EoxfF_aJrAuzVMfoDxEkF8OofML-lIGave6t43WnGq85QcExSDdw5yRzTrKqx5GLW-rpoHWP4PdqU1T6McZjPV6SWkmDMKZun6DKlY0gpWvd_a4nVyTW1uKZOrqk312bW1cLy1tp3DEq5EBX9Cyo6ldM</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Hou, Yongyan</creator><creator>Dong, Baiyang</creator><creator>Guo, Wenqiang</creator><creator>Wang, Xin</creator><creator>Xiao, Qinkun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8601-2229</orcidid><orcidid>https://orcid.org/0009-0004-0500-4489</orcidid><orcidid>https://orcid.org/0000-0003-1904-7821</orcidid><orcidid>https://orcid.org/0000-0002-2651-1218</orcidid><orcidid>https://orcid.org/0000-0002-6283-791X</orcidid></search><sort><creationdate>2023</creationdate><title>A Triple Unlocking Mechanism Model Against Forging Signature Attack Based on Multivariate Polynomial Public Key Cryptosystem</title><author>Hou, Yongyan ; Dong, Baiyang ; Guo, Wenqiang ; Wang, Xin ; Xiao, Qinkun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-2d89ecb1fd6f6b9d4c9c1d724a1d8b440c5b2cfa662dc5bf1269fdce7aad876f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cryptography</topic><topic>Equivalence</topic><topic>equivalent key attack</topic><topic>Forging</topic><topic>Galois fields</topic><topic>Mathematical models</topic><topic>Multivariate analysis</topic><topic>Multivariate polynomial</topic><topic>Polynomials</topic><topic>public key</topic><topic>Public key cryptography</topic><topic>Resistance</topic><topic>Security</topic><topic>signature</topic><topic>Signatures</topic><topic>Solid modeling</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Yongyan</creatorcontrib><creatorcontrib>Dong, Baiyang</creatorcontrib><creatorcontrib>Guo, Wenqiang</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Xiao, Qinkun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Yongyan</au><au>Dong, Baiyang</au><au>Guo, Wenqiang</au><au>Wang, Xin</au><au>Xiao, Qinkun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Triple Unlocking Mechanism Model Against Forging Signature Attack Based on Multivariate Polynomial Public Key Cryptosystem</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>134614</spage><epage>134622</epage><pages>134614-134622</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Since the original signature model did not account for the possible threat of the forging signature attack, the majority of existing multivariate polynomial public key based signature schemes are at risk of forging signatures by equivalent key attacks. In this research, an enhanced signature model, Triple Unlocking Mechanism (TUM), is provided to resist all the possibility that the signature generated by the equivalent keys. The additional public keys are generated in the sake of enhancing the security by verifying internal unit information in the scheme after three designed unlocking operations. As a result, the signature can only be generated by the user who has the real legal key and the threat of the key recovery attack can be eliminated. The security of TUM signature based on random oracle model is proved. Experimental results demonstrate that, using an MI system coupled with TUM as an example, the advantages of the enhanced signature model are more secure than the original one at the expense of taking a little more time for signing. Moreover, influences of different parameters in multivariate polynomial public key signatures are investigated. Based on the original state-of-art model, the presented model is generic construction and applicable for existing multivariate signature scheme's construction.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3338025</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8601-2229</orcidid><orcidid>https://orcid.org/0009-0004-0500-4489</orcidid><orcidid>https://orcid.org/0000-0003-1904-7821</orcidid><orcidid>https://orcid.org/0000-0002-2651-1218</orcidid><orcidid>https://orcid.org/0000-0002-6283-791X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023, Vol.11, p.134614-134622 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2023_3338025 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Cryptography Equivalence equivalent key attack Forging Galois fields Mathematical models Multivariate analysis Multivariate polynomial Polynomials public key Public key cryptography Resistance Security signature Signatures Solid modeling Wireless sensor networks |
title | A Triple Unlocking Mechanism Model Against Forging Signature Attack Based on Multivariate Polynomial Public Key Cryptosystem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A33%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Triple%20Unlocking%20Mechanism%20Model%20Against%20Forging%20Signature%20Attack%20Based%20on%20Multivariate%20Polynomial%20Public%20Key%20Cryptosystem&rft.jtitle=IEEE%20access&rft.au=Hou,%20Yongyan&rft.date=2023&rft.volume=11&rft.spage=134614&rft.epage=134622&rft.pages=134614-134622&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3338025&rft_dat=%3Cproquest_cross%3E2899200534%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899200534&rft_id=info:pmid/&rft_ieee_id=10335667&rft_doaj_id=oai_doaj_org_article_58bc457bd3af493ca5ff94f4c4780956&rfr_iscdi=true |