Day-Ahead Scheduling of Wind-Hydro Balancing Group Operation to Maximize Expected Revenue Considering Wind Power Output Uncertainty
To use energy generated in wind farms (WFs), which contain uncertainty in their output, as a primary power source in a power system, a sophisticated balancing operation scheme is required. This study focuses on a balancing group (BG) scheme combining WFs and a variable-speed pumped-storage hydro gen...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023, Vol.11, p.119200-119218 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 119218 |
---|---|
container_issue | |
container_start_page | 119200 |
container_title | IEEE access |
container_volume | 11 |
creator | Fujimoto, Yu Inagaki, Maiko Kaneko, Akihisa Minotsu, Shinichiro Hayashi, Yasuhiro |
description | To use energy generated in wind farms (WFs), which contain uncertainty in their output, as a primary power source in a power system, a sophisticated balancing operation scheme is required. This study focuses on a balancing group (BG) scheme combining WFs and a variable-speed pumped-storage hydro generator (PSHG), which has a large capacity to compensate for the WF output. The proposed BG operational scheduling approach aims to maximize the expected revenue obtained in the day-ahead power market under the uncertainty in WF output and market price by considering the operational constraints of the PSHG, i.e., the water storage capacity and frequency of operation for switching pump-up/-down. In such a BG scheme, it is crucial to consider time-varying and time-dependent uncertainties in WF output to manage PSHG capacity constraints, as well as to derive a reasonable plan in practical computation time. The proposed BG operational scheduling scheme derives a set of WF output scenarios that represents the heterogeneous and time-dependent characteristics of real-world WF output behavior from probability density distributions derived by a cutting-edge prediction approach and implements the expected revenue maximization problem with scenario-based chance constraints of water storage transition by introducing computationally effective iterative optimization algorithm based on surrogate functions. Simulation results suggest that the proposed scheme provides an effective BG operation by considering the uncertainty in the WF output. |
doi_str_mv | 10.1109/ACCESS.2023.3327569 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3327569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10295475</ieee_id><doaj_id>oai_doaj_org_article_30a813050d424b6b9e1a825946f6c5d0</doaj_id><sourcerecordid>2885652151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-7668f97c7df47e29a345414b3f64c1e6c74b344c060a52dcf48c23006d185213</originalsourceid><addsrcrecordid>eNpNUU1r3DAUNKWFhCS_oDkIevZG37aOW3fzASlbuik9Cq30nGjZSK4st9lc88dr16HkXd4wvJl5MEXxkeAFIVhdLJtmtdksKKZswRithFTvimNKpCqZYPL9G3xUnPX9Do9Tj5SojouXL-ZQLh_AOLSxD-CGvQ_3KLbopw-uvD64FNFnszfBTvxVikOH1h0kk30MKEf01Tz5R_8MaPXUgc3g0Hf4DWEA1MTQewdpEk5u6Fv8Awmth9wNGf0IFlI2PuTDafGhNfsezl73SXF3ubprrsvb9dVNs7wtLRMql5WUdasqW7mWV0CVYVxwwresldwSkLYaMecWS2wEdbbltaUMY-lILShhJ8XNbOui2eku-UeTDjoar_8RMd1rk7K3e9AMm5owLLDjlG_lVgExNRWKy1Za4fDo9Wn26lL8NUCf9S4OKYzfa1rXQo55Ykpk85VNse8TtP9TCdZTd3ruTk_d6dfuRtX5rPIA8EZBleCVYH8Bly-U-w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885652151</pqid></control><display><type>article</type><title>Day-Ahead Scheduling of Wind-Hydro Balancing Group Operation to Maximize Expected Revenue Considering Wind Power Output Uncertainty</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fujimoto, Yu ; Inagaki, Maiko ; Kaneko, Akihisa ; Minotsu, Shinichiro ; Hayashi, Yasuhiro</creator><creatorcontrib>Fujimoto, Yu ; Inagaki, Maiko ; Kaneko, Akihisa ; Minotsu, Shinichiro ; Hayashi, Yasuhiro</creatorcontrib><description>To use energy generated in wind farms (WFs), which contain uncertainty in their output, as a primary power source in a power system, a sophisticated balancing operation scheme is required. This study focuses on a balancing group (BG) scheme combining WFs and a variable-speed pumped-storage hydro generator (PSHG), which has a large capacity to compensate for the WF output. The proposed BG operational scheduling approach aims to maximize the expected revenue obtained in the day-ahead power market under the uncertainty in WF output and market price by considering the operational constraints of the PSHG, i.e., the water storage capacity and frequency of operation for switching pump-up/-down. In such a BG scheme, it is crucial to consider time-varying and time-dependent uncertainties in WF output to manage PSHG capacity constraints, as well as to derive a reasonable plan in practical computation time. The proposed BG operational scheduling scheme derives a set of WF output scenarios that represents the heterogeneous and time-dependent characteristics of real-world WF output behavior from probability density distributions derived by a cutting-edge prediction approach and implements the expected revenue maximization problem with scenario-based chance constraints of water storage transition by introducing computationally effective iterative optimization algorithm based on surrogate functions. Simulation results suggest that the proposed scheme provides an effective BG operation by considering the uncertainty in the WF output.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3327569</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Balancing ; Balancing group operation ; chance constraint ; Energy management ; expectation optimization ; Iterative methods ; net-zero ; Optimization ; Power sources ; probability density prediction ; Pumped storage ; pumped storage hydropower generation ; Revenue ; Schedules ; Scheduling ; Storage capacity ; Time dependence ; Uncertainty ; vine copula ; Water storage ; Wind farms ; Wind forecasting ; Wind power ; Wind power generation</subject><ispartof>IEEE access, 2023, Vol.11, p.119200-119218</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-7668f97c7df47e29a345414b3f64c1e6c74b344c060a52dcf48c23006d185213</cites><orcidid>0009-0002-8112-4840 ; 0000-0002-4009-4430 ; 0000-0001-8475-0535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10295475$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Fujimoto, Yu</creatorcontrib><creatorcontrib>Inagaki, Maiko</creatorcontrib><creatorcontrib>Kaneko, Akihisa</creatorcontrib><creatorcontrib>Minotsu, Shinichiro</creatorcontrib><creatorcontrib>Hayashi, Yasuhiro</creatorcontrib><title>Day-Ahead Scheduling of Wind-Hydro Balancing Group Operation to Maximize Expected Revenue Considering Wind Power Output Uncertainty</title><title>IEEE access</title><addtitle>Access</addtitle><description>To use energy generated in wind farms (WFs), which contain uncertainty in their output, as a primary power source in a power system, a sophisticated balancing operation scheme is required. This study focuses on a balancing group (BG) scheme combining WFs and a variable-speed pumped-storage hydro generator (PSHG), which has a large capacity to compensate for the WF output. The proposed BG operational scheduling approach aims to maximize the expected revenue obtained in the day-ahead power market under the uncertainty in WF output and market price by considering the operational constraints of the PSHG, i.e., the water storage capacity and frequency of operation for switching pump-up/-down. In such a BG scheme, it is crucial to consider time-varying and time-dependent uncertainties in WF output to manage PSHG capacity constraints, as well as to derive a reasonable plan in practical computation time. The proposed BG operational scheduling scheme derives a set of WF output scenarios that represents the heterogeneous and time-dependent characteristics of real-world WF output behavior from probability density distributions derived by a cutting-edge prediction approach and implements the expected revenue maximization problem with scenario-based chance constraints of water storage transition by introducing computationally effective iterative optimization algorithm based on surrogate functions. Simulation results suggest that the proposed scheme provides an effective BG operation by considering the uncertainty in the WF output.</description><subject>Algorithms</subject><subject>Balancing</subject><subject>Balancing group operation</subject><subject>chance constraint</subject><subject>Energy management</subject><subject>expectation optimization</subject><subject>Iterative methods</subject><subject>net-zero</subject><subject>Optimization</subject><subject>Power sources</subject><subject>probability density prediction</subject><subject>Pumped storage</subject><subject>pumped storage hydropower generation</subject><subject>Revenue</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>Storage capacity</subject><subject>Time dependence</subject><subject>Uncertainty</subject><subject>vine copula</subject><subject>Water storage</subject><subject>Wind farms</subject><subject>Wind forecasting</subject><subject>Wind power</subject><subject>Wind power generation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAUNKWFhCS_oDkIevZG37aOW3fzASlbuik9Cq30nGjZSK4st9lc88dr16HkXd4wvJl5MEXxkeAFIVhdLJtmtdksKKZswRithFTvimNKpCqZYPL9G3xUnPX9Do9Tj5SojouXL-ZQLh_AOLSxD-CGvQ_3KLbopw-uvD64FNFnszfBTvxVikOH1h0kk30MKEf01Tz5R_8MaPXUgc3g0Hf4DWEA1MTQewdpEk5u6Fv8Awmth9wNGf0IFlI2PuTDafGhNfsezl73SXF3ubprrsvb9dVNs7wtLRMql5WUdasqW7mWV0CVYVxwwresldwSkLYaMecWS2wEdbbltaUMY-lILShhJ8XNbOui2eku-UeTDjoar_8RMd1rk7K3e9AMm5owLLDjlG_lVgExNRWKy1Za4fDo9Wn26lL8NUCf9S4OKYzfa1rXQo55Ykpk85VNse8TtP9TCdZTd3ruTk_d6dfuRtX5rPIA8EZBleCVYH8Bly-U-w</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Fujimoto, Yu</creator><creator>Inagaki, Maiko</creator><creator>Kaneko, Akihisa</creator><creator>Minotsu, Shinichiro</creator><creator>Hayashi, Yasuhiro</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0002-8112-4840</orcidid><orcidid>https://orcid.org/0000-0002-4009-4430</orcidid><orcidid>https://orcid.org/0000-0001-8475-0535</orcidid></search><sort><creationdate>2023</creationdate><title>Day-Ahead Scheduling of Wind-Hydro Balancing Group Operation to Maximize Expected Revenue Considering Wind Power Output Uncertainty</title><author>Fujimoto, Yu ; Inagaki, Maiko ; Kaneko, Akihisa ; Minotsu, Shinichiro ; Hayashi, Yasuhiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-7668f97c7df47e29a345414b3f64c1e6c74b344c060a52dcf48c23006d185213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Balancing</topic><topic>Balancing group operation</topic><topic>chance constraint</topic><topic>Energy management</topic><topic>expectation optimization</topic><topic>Iterative methods</topic><topic>net-zero</topic><topic>Optimization</topic><topic>Power sources</topic><topic>probability density prediction</topic><topic>Pumped storage</topic><topic>pumped storage hydropower generation</topic><topic>Revenue</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>Storage capacity</topic><topic>Time dependence</topic><topic>Uncertainty</topic><topic>vine copula</topic><topic>Water storage</topic><topic>Wind farms</topic><topic>Wind forecasting</topic><topic>Wind power</topic><topic>Wind power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujimoto, Yu</creatorcontrib><creatorcontrib>Inagaki, Maiko</creatorcontrib><creatorcontrib>Kaneko, Akihisa</creatorcontrib><creatorcontrib>Minotsu, Shinichiro</creatorcontrib><creatorcontrib>Hayashi, Yasuhiro</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujimoto, Yu</au><au>Inagaki, Maiko</au><au>Kaneko, Akihisa</au><au>Minotsu, Shinichiro</au><au>Hayashi, Yasuhiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Day-Ahead Scheduling of Wind-Hydro Balancing Group Operation to Maximize Expected Revenue Considering Wind Power Output Uncertainty</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>119200</spage><epage>119218</epage><pages>119200-119218</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>To use energy generated in wind farms (WFs), which contain uncertainty in their output, as a primary power source in a power system, a sophisticated balancing operation scheme is required. This study focuses on a balancing group (BG) scheme combining WFs and a variable-speed pumped-storage hydro generator (PSHG), which has a large capacity to compensate for the WF output. The proposed BG operational scheduling approach aims to maximize the expected revenue obtained in the day-ahead power market under the uncertainty in WF output and market price by considering the operational constraints of the PSHG, i.e., the water storage capacity and frequency of operation for switching pump-up/-down. In such a BG scheme, it is crucial to consider time-varying and time-dependent uncertainties in WF output to manage PSHG capacity constraints, as well as to derive a reasonable plan in practical computation time. The proposed BG operational scheduling scheme derives a set of WF output scenarios that represents the heterogeneous and time-dependent characteristics of real-world WF output behavior from probability density distributions derived by a cutting-edge prediction approach and implements the expected revenue maximization problem with scenario-based chance constraints of water storage transition by introducing computationally effective iterative optimization algorithm based on surrogate functions. Simulation results suggest that the proposed scheme provides an effective BG operation by considering the uncertainty in the WF output.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3327569</doi><tpages>19</tpages><orcidid>https://orcid.org/0009-0002-8112-4840</orcidid><orcidid>https://orcid.org/0000-0002-4009-4430</orcidid><orcidid>https://orcid.org/0000-0001-8475-0535</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023, Vol.11, p.119200-119218 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2023_3327569 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Balancing Balancing group operation chance constraint Energy management expectation optimization Iterative methods net-zero Optimization Power sources probability density prediction Pumped storage pumped storage hydropower generation Revenue Schedules Scheduling Storage capacity Time dependence Uncertainty vine copula Water storage Wind farms Wind forecasting Wind power Wind power generation |
title | Day-Ahead Scheduling of Wind-Hydro Balancing Group Operation to Maximize Expected Revenue Considering Wind Power Output Uncertainty |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T08%3A43%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Day-Ahead%20Scheduling%20of%20Wind-Hydro%20Balancing%20Group%20Operation%20to%20Maximize%20Expected%20Revenue%20Considering%20Wind%20Power%20Output%20Uncertainty&rft.jtitle=IEEE%20access&rft.au=Fujimoto,%20Yu&rft.date=2023&rft.volume=11&rft.spage=119200&rft.epage=119218&rft.pages=119200-119218&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3327569&rft_dat=%3Cproquest_cross%3E2885652151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885652151&rft_id=info:pmid/&rft_ieee_id=10295475&rft_doaj_id=oai_doaj_org_article_30a813050d424b6b9e1a825946f6c5d0&rfr_iscdi=true |