Day-Ahead Scheduling of Wind-Hydro Balancing Group Operation to Maximize Expected Revenue Considering Wind Power Output Uncertainty

To use energy generated in wind farms (WFs), which contain uncertainty in their output, as a primary power source in a power system, a sophisticated balancing operation scheme is required. This study focuses on a balancing group (BG) scheme combining WFs and a variable-speed pumped-storage hydro gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023, Vol.11, p.119200-119218
Hauptverfasser: Fujimoto, Yu, Inagaki, Maiko, Kaneko, Akihisa, Minotsu, Shinichiro, Hayashi, Yasuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119218
container_issue
container_start_page 119200
container_title IEEE access
container_volume 11
creator Fujimoto, Yu
Inagaki, Maiko
Kaneko, Akihisa
Minotsu, Shinichiro
Hayashi, Yasuhiro
description To use energy generated in wind farms (WFs), which contain uncertainty in their output, as a primary power source in a power system, a sophisticated balancing operation scheme is required. This study focuses on a balancing group (BG) scheme combining WFs and a variable-speed pumped-storage hydro generator (PSHG), which has a large capacity to compensate for the WF output. The proposed BG operational scheduling approach aims to maximize the expected revenue obtained in the day-ahead power market under the uncertainty in WF output and market price by considering the operational constraints of the PSHG, i.e., the water storage capacity and frequency of operation for switching pump-up/-down. In such a BG scheme, it is crucial to consider time-varying and time-dependent uncertainties in WF output to manage PSHG capacity constraints, as well as to derive a reasonable plan in practical computation time. The proposed BG operational scheduling scheme derives a set of WF output scenarios that represents the heterogeneous and time-dependent characteristics of real-world WF output behavior from probability density distributions derived by a cutting-edge prediction approach and implements the expected revenue maximization problem with scenario-based chance constraints of water storage transition by introducing computationally effective iterative optimization algorithm based on surrogate functions. Simulation results suggest that the proposed scheme provides an effective BG operation by considering the uncertainty in the WF output.
doi_str_mv 10.1109/ACCESS.2023.3327569
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3327569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10295475</ieee_id><doaj_id>oai_doaj_org_article_30a813050d424b6b9e1a825946f6c5d0</doaj_id><sourcerecordid>2885652151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-7668f97c7df47e29a345414b3f64c1e6c74b344c060a52dcf48c23006d185213</originalsourceid><addsrcrecordid>eNpNUU1r3DAUNKWFhCS_oDkIevZG37aOW3fzASlbuik9Cq30nGjZSK4st9lc88dr16HkXd4wvJl5MEXxkeAFIVhdLJtmtdksKKZswRithFTvimNKpCqZYPL9G3xUnPX9Do9Tj5SojouXL-ZQLh_AOLSxD-CGvQ_3KLbopw-uvD64FNFnszfBTvxVikOH1h0kk30MKEf01Tz5R_8MaPXUgc3g0Hf4DWEA1MTQewdpEk5u6Fv8Awmth9wNGf0IFlI2PuTDafGhNfsezl73SXF3ubprrsvb9dVNs7wtLRMql5WUdasqW7mWV0CVYVxwwresldwSkLYaMecWS2wEdbbltaUMY-lILShhJ8XNbOui2eku-UeTDjoar_8RMd1rk7K3e9AMm5owLLDjlG_lVgExNRWKy1Za4fDo9Wn26lL8NUCf9S4OKYzfa1rXQo55Ykpk85VNse8TtP9TCdZTd3ruTk_d6dfuRtX5rPIA8EZBleCVYH8Bly-U-w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885652151</pqid></control><display><type>article</type><title>Day-Ahead Scheduling of Wind-Hydro Balancing Group Operation to Maximize Expected Revenue Considering Wind Power Output Uncertainty</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fujimoto, Yu ; Inagaki, Maiko ; Kaneko, Akihisa ; Minotsu, Shinichiro ; Hayashi, Yasuhiro</creator><creatorcontrib>Fujimoto, Yu ; Inagaki, Maiko ; Kaneko, Akihisa ; Minotsu, Shinichiro ; Hayashi, Yasuhiro</creatorcontrib><description>To use energy generated in wind farms (WFs), which contain uncertainty in their output, as a primary power source in a power system, a sophisticated balancing operation scheme is required. This study focuses on a balancing group (BG) scheme combining WFs and a variable-speed pumped-storage hydro generator (PSHG), which has a large capacity to compensate for the WF output. The proposed BG operational scheduling approach aims to maximize the expected revenue obtained in the day-ahead power market under the uncertainty in WF output and market price by considering the operational constraints of the PSHG, i.e., the water storage capacity and frequency of operation for switching pump-up/-down. In such a BG scheme, it is crucial to consider time-varying and time-dependent uncertainties in WF output to manage PSHG capacity constraints, as well as to derive a reasonable plan in practical computation time. The proposed BG operational scheduling scheme derives a set of WF output scenarios that represents the heterogeneous and time-dependent characteristics of real-world WF output behavior from probability density distributions derived by a cutting-edge prediction approach and implements the expected revenue maximization problem with scenario-based chance constraints of water storage transition by introducing computationally effective iterative optimization algorithm based on surrogate functions. Simulation results suggest that the proposed scheme provides an effective BG operation by considering the uncertainty in the WF output.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3327569</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Balancing ; Balancing group operation ; chance constraint ; Energy management ; expectation optimization ; Iterative methods ; net-zero ; Optimization ; Power sources ; probability density prediction ; Pumped storage ; pumped storage hydropower generation ; Revenue ; Schedules ; Scheduling ; Storage capacity ; Time dependence ; Uncertainty ; vine copula ; Water storage ; Wind farms ; Wind forecasting ; Wind power ; Wind power generation</subject><ispartof>IEEE access, 2023, Vol.11, p.119200-119218</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-7668f97c7df47e29a345414b3f64c1e6c74b344c060a52dcf48c23006d185213</cites><orcidid>0009-0002-8112-4840 ; 0000-0002-4009-4430 ; 0000-0001-8475-0535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10295475$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Fujimoto, Yu</creatorcontrib><creatorcontrib>Inagaki, Maiko</creatorcontrib><creatorcontrib>Kaneko, Akihisa</creatorcontrib><creatorcontrib>Minotsu, Shinichiro</creatorcontrib><creatorcontrib>Hayashi, Yasuhiro</creatorcontrib><title>Day-Ahead Scheduling of Wind-Hydro Balancing Group Operation to Maximize Expected Revenue Considering Wind Power Output Uncertainty</title><title>IEEE access</title><addtitle>Access</addtitle><description>To use energy generated in wind farms (WFs), which contain uncertainty in their output, as a primary power source in a power system, a sophisticated balancing operation scheme is required. This study focuses on a balancing group (BG) scheme combining WFs and a variable-speed pumped-storage hydro generator (PSHG), which has a large capacity to compensate for the WF output. The proposed BG operational scheduling approach aims to maximize the expected revenue obtained in the day-ahead power market under the uncertainty in WF output and market price by considering the operational constraints of the PSHG, i.e., the water storage capacity and frequency of operation for switching pump-up/-down. In such a BG scheme, it is crucial to consider time-varying and time-dependent uncertainties in WF output to manage PSHG capacity constraints, as well as to derive a reasonable plan in practical computation time. The proposed BG operational scheduling scheme derives a set of WF output scenarios that represents the heterogeneous and time-dependent characteristics of real-world WF output behavior from probability density distributions derived by a cutting-edge prediction approach and implements the expected revenue maximization problem with scenario-based chance constraints of water storage transition by introducing computationally effective iterative optimization algorithm based on surrogate functions. Simulation results suggest that the proposed scheme provides an effective BG operation by considering the uncertainty in the WF output.</description><subject>Algorithms</subject><subject>Balancing</subject><subject>Balancing group operation</subject><subject>chance constraint</subject><subject>Energy management</subject><subject>expectation optimization</subject><subject>Iterative methods</subject><subject>net-zero</subject><subject>Optimization</subject><subject>Power sources</subject><subject>probability density prediction</subject><subject>Pumped storage</subject><subject>pumped storage hydropower generation</subject><subject>Revenue</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>Storage capacity</subject><subject>Time dependence</subject><subject>Uncertainty</subject><subject>vine copula</subject><subject>Water storage</subject><subject>Wind farms</subject><subject>Wind forecasting</subject><subject>Wind power</subject><subject>Wind power generation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAUNKWFhCS_oDkIevZG37aOW3fzASlbuik9Cq30nGjZSK4st9lc88dr16HkXd4wvJl5MEXxkeAFIVhdLJtmtdksKKZswRithFTvimNKpCqZYPL9G3xUnPX9Do9Tj5SojouXL-ZQLh_AOLSxD-CGvQ_3KLbopw-uvD64FNFnszfBTvxVikOH1h0kk30MKEf01Tz5R_8MaPXUgc3g0Hf4DWEA1MTQewdpEk5u6Fv8Awmth9wNGf0IFlI2PuTDafGhNfsezl73SXF3ubprrsvb9dVNs7wtLRMql5WUdasqW7mWV0CVYVxwwresldwSkLYaMecWS2wEdbbltaUMY-lILShhJ8XNbOui2eku-UeTDjoar_8RMd1rk7K3e9AMm5owLLDjlG_lVgExNRWKy1Za4fDo9Wn26lL8NUCf9S4OKYzfa1rXQo55Ykpk85VNse8TtP9TCdZTd3ruTk_d6dfuRtX5rPIA8EZBleCVYH8Bly-U-w</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Fujimoto, Yu</creator><creator>Inagaki, Maiko</creator><creator>Kaneko, Akihisa</creator><creator>Minotsu, Shinichiro</creator><creator>Hayashi, Yasuhiro</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0002-8112-4840</orcidid><orcidid>https://orcid.org/0000-0002-4009-4430</orcidid><orcidid>https://orcid.org/0000-0001-8475-0535</orcidid></search><sort><creationdate>2023</creationdate><title>Day-Ahead Scheduling of Wind-Hydro Balancing Group Operation to Maximize Expected Revenue Considering Wind Power Output Uncertainty</title><author>Fujimoto, Yu ; Inagaki, Maiko ; Kaneko, Akihisa ; Minotsu, Shinichiro ; Hayashi, Yasuhiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-7668f97c7df47e29a345414b3f64c1e6c74b344c060a52dcf48c23006d185213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Balancing</topic><topic>Balancing group operation</topic><topic>chance constraint</topic><topic>Energy management</topic><topic>expectation optimization</topic><topic>Iterative methods</topic><topic>net-zero</topic><topic>Optimization</topic><topic>Power sources</topic><topic>probability density prediction</topic><topic>Pumped storage</topic><topic>pumped storage hydropower generation</topic><topic>Revenue</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>Storage capacity</topic><topic>Time dependence</topic><topic>Uncertainty</topic><topic>vine copula</topic><topic>Water storage</topic><topic>Wind farms</topic><topic>Wind forecasting</topic><topic>Wind power</topic><topic>Wind power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujimoto, Yu</creatorcontrib><creatorcontrib>Inagaki, Maiko</creatorcontrib><creatorcontrib>Kaneko, Akihisa</creatorcontrib><creatorcontrib>Minotsu, Shinichiro</creatorcontrib><creatorcontrib>Hayashi, Yasuhiro</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujimoto, Yu</au><au>Inagaki, Maiko</au><au>Kaneko, Akihisa</au><au>Minotsu, Shinichiro</au><au>Hayashi, Yasuhiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Day-Ahead Scheduling of Wind-Hydro Balancing Group Operation to Maximize Expected Revenue Considering Wind Power Output Uncertainty</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>119200</spage><epage>119218</epage><pages>119200-119218</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>To use energy generated in wind farms (WFs), which contain uncertainty in their output, as a primary power source in a power system, a sophisticated balancing operation scheme is required. This study focuses on a balancing group (BG) scheme combining WFs and a variable-speed pumped-storage hydro generator (PSHG), which has a large capacity to compensate for the WF output. The proposed BG operational scheduling approach aims to maximize the expected revenue obtained in the day-ahead power market under the uncertainty in WF output and market price by considering the operational constraints of the PSHG, i.e., the water storage capacity and frequency of operation for switching pump-up/-down. In such a BG scheme, it is crucial to consider time-varying and time-dependent uncertainties in WF output to manage PSHG capacity constraints, as well as to derive a reasonable plan in practical computation time. The proposed BG operational scheduling scheme derives a set of WF output scenarios that represents the heterogeneous and time-dependent characteristics of real-world WF output behavior from probability density distributions derived by a cutting-edge prediction approach and implements the expected revenue maximization problem with scenario-based chance constraints of water storage transition by introducing computationally effective iterative optimization algorithm based on surrogate functions. Simulation results suggest that the proposed scheme provides an effective BG operation by considering the uncertainty in the WF output.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3327569</doi><tpages>19</tpages><orcidid>https://orcid.org/0009-0002-8112-4840</orcidid><orcidid>https://orcid.org/0000-0002-4009-4430</orcidid><orcidid>https://orcid.org/0000-0001-8475-0535</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023, Vol.11, p.119200-119218
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2023_3327569
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Balancing
Balancing group operation
chance constraint
Energy management
expectation optimization
Iterative methods
net-zero
Optimization
Power sources
probability density prediction
Pumped storage
pumped storage hydropower generation
Revenue
Schedules
Scheduling
Storage capacity
Time dependence
Uncertainty
vine copula
Water storage
Wind farms
Wind forecasting
Wind power
Wind power generation
title Day-Ahead Scheduling of Wind-Hydro Balancing Group Operation to Maximize Expected Revenue Considering Wind Power Output Uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T08%3A43%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Day-Ahead%20Scheduling%20of%20Wind-Hydro%20Balancing%20Group%20Operation%20to%20Maximize%20Expected%20Revenue%20Considering%20Wind%20Power%20Output%20Uncertainty&rft.jtitle=IEEE%20access&rft.au=Fujimoto,%20Yu&rft.date=2023&rft.volume=11&rft.spage=119200&rft.epage=119218&rft.pages=119200-119218&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3327569&rft_dat=%3Cproquest_cross%3E2885652151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885652151&rft_id=info:pmid/&rft_ieee_id=10295475&rft_doaj_id=oai_doaj_org_article_30a813050d424b6b9e1a825946f6c5d0&rfr_iscdi=true