Availability Evaluation and Design Optimization of Multi-State k-out-of-n: G Systems With Random Performance Requirements
As an important aspect of reliability theory, availability has now been considered a very meaningful design criterion of repairable system. This paper investigates the availability evaluation and design optimization of the multi-state k-out-of-n: G systems considering random weight threshold. The sy...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023, Vol.11, p.119106-119117 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 119117 |
---|---|
container_issue | |
container_start_page | 119106 |
container_title | IEEE access |
container_volume | 11 |
creator | Li, Jing Xue, Li Wang, Guodong Zhou, Haofei |
description | As an important aspect of reliability theory, availability has now been considered a very meaningful design criterion of repairable system. This paper investigates the availability evaluation and design optimization of the multi-state k-out-of-n: G systems considering random weight threshold. The system availability is evaluated by extending the recursive algorithm (RA) and universal generating function (UGF) technique. Based on the traditional recursive algorithm, the total probability theorem is used to solve the discrete random weight threshold. Another better UGF method combines a new stochastic joint operator, which is suitable for both continuous and discrete random weight thresholds. Furthermore, we constructed two system design optimization models under availability or cost constraint respectively, and genetic algorithm (GA) programming can be applied to obtain the optimal state probability distribution and weight distribution of multi-state components of the suggested system. Finally, through numerical examples, the flexibility and effectiveness of the proposed methods for design optimization are demonstrated. In addition, two evaluation methods are compared to show that the customized UGF method features higher generality than RA in the case of continuous stochastic weight threshold, and higher operational efficiency in the case of increasing component quantity and state. The results can be helpful for engineers to optimize the design of complex systems. |
doi_str_mv | 10.1109/ACCESS.2023.3327431 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3327431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10295493</ieee_id><doaj_id>oai_doaj_org_article_c8ab2a9a64664c989ad3e4c26ac49e16</doaj_id><sourcerecordid>2885652176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-2765d0eead8315bd6a9fa7f8fef0d71240c8e0fa92b147895a76cdb7f67353213</originalsourceid><addsrcrecordid>eNpNUV1v1DAQjBBIVKW_AB4s8ZzDH4kd83Y6jlKpqFUPxKO1cdbFRxJfbafS8evJkarqvuxqNDO7qymK94yuGKP603qz2e52K065WAnBVSXYq-KMM6lLUQv5-sX8trhIaU_namaoVmfFcf0IvofW9z4fyfYR-gmyDyOBsSNfMPn7kdwcsh_83wUPjnyf-uzLXYaM5E8ZplwGV46fySXZHVPGIZFfPv8md7NFGMgtRhfiAKNFcocPk4844JjTu-KNgz7hxVM_L35-3f7YfCuvby6vNuvr0opa55IrWXcUEbpGsLrtJGgHyjUOHe0U4xW1DVIHmresUo2uQUnbtcpJNX_MmTgvrhbfLsDeHKIfIB5NAG_-AyHeG4jZ2x6NbaDloEFWUlZWNxo6gZXlEmylkcnZ6-PidYjhYcKUzT5McZzPN7xpallzpk4ssbBsDClFdM9bGTWnyMwSmTlFZp4im1UfFpVHxBcKrutKC_EPJ4STeg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885652176</pqid></control><display><type>article</type><title>Availability Evaluation and Design Optimization of Multi-State k-out-of-n: G Systems With Random Performance Requirements</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Jing ; Xue, Li ; Wang, Guodong ; Zhou, Haofei</creator><creatorcontrib>Li, Jing ; Xue, Li ; Wang, Guodong ; Zhou, Haofei</creatorcontrib><description>As an important aspect of reliability theory, availability has now been considered a very meaningful design criterion of repairable system. This paper investigates the availability evaluation and design optimization of the multi-state k-out-of-n: G systems considering random weight threshold. The system availability is evaluated by extending the recursive algorithm (RA) and universal generating function (UGF) technique. Based on the traditional recursive algorithm, the total probability theorem is used to solve the discrete random weight threshold. Another better UGF method combines a new stochastic joint operator, which is suitable for both continuous and discrete random weight thresholds. Furthermore, we constructed two system design optimization models under availability or cost constraint respectively, and genetic algorithm (GA) programming can be applied to obtain the optimal state probability distribution and weight distribution of multi-state components of the suggested system. Finally, through numerical examples, the flexibility and effectiveness of the proposed methods for design optimization are demonstrated. In addition, two evaluation methods are compared to show that the customized UGF method features higher generality than RA in the case of continuous stochastic weight threshold, and higher operational efficiency in the case of increasing component quantity and state. The results can be helpful for engineers to optimize the design of complex systems.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3327431</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Availability ; Complex systems ; Constraint modelling ; Costs ; Design analysis ; Design criteria ; Design optimization ; Genetic algorithms ; Maintenance engineering ; Marine vehicles ; Multi-state k-out-of-n: G system ; Operators (mathematics) ; Optimization models ; Probability theory ; recursive algorithm ; Reliability engineering ; Systems design ; Transportation ; universal generating function</subject><ispartof>IEEE access, 2023, Vol.11, p.119106-119117</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-2765d0eead8315bd6a9fa7f8fef0d71240c8e0fa92b147895a76cdb7f67353213</cites><orcidid>0000-0002-4242-4181 ; 0000-0002-6963-7064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10295493$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Xue, Li</creatorcontrib><creatorcontrib>Wang, Guodong</creatorcontrib><creatorcontrib>Zhou, Haofei</creatorcontrib><title>Availability Evaluation and Design Optimization of Multi-State k-out-of-n: G Systems With Random Performance Requirements</title><title>IEEE access</title><addtitle>Access</addtitle><description>As an important aspect of reliability theory, availability has now been considered a very meaningful design criterion of repairable system. This paper investigates the availability evaluation and design optimization of the multi-state k-out-of-n: G systems considering random weight threshold. The system availability is evaluated by extending the recursive algorithm (RA) and universal generating function (UGF) technique. Based on the traditional recursive algorithm, the total probability theorem is used to solve the discrete random weight threshold. Another better UGF method combines a new stochastic joint operator, which is suitable for both continuous and discrete random weight thresholds. Furthermore, we constructed two system design optimization models under availability or cost constraint respectively, and genetic algorithm (GA) programming can be applied to obtain the optimal state probability distribution and weight distribution of multi-state components of the suggested system. Finally, through numerical examples, the flexibility and effectiveness of the proposed methods for design optimization are demonstrated. In addition, two evaluation methods are compared to show that the customized UGF method features higher generality than RA in the case of continuous stochastic weight threshold, and higher operational efficiency in the case of increasing component quantity and state. The results can be helpful for engineers to optimize the design of complex systems.</description><subject>Algorithms</subject><subject>Availability</subject><subject>Complex systems</subject><subject>Constraint modelling</subject><subject>Costs</subject><subject>Design analysis</subject><subject>Design criteria</subject><subject>Design optimization</subject><subject>Genetic algorithms</subject><subject>Maintenance engineering</subject><subject>Marine vehicles</subject><subject>Multi-state k-out-of-n: G system</subject><subject>Operators (mathematics)</subject><subject>Optimization models</subject><subject>Probability theory</subject><subject>recursive algorithm</subject><subject>Reliability engineering</subject><subject>Systems design</subject><subject>Transportation</subject><subject>universal generating function</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1v1DAQjBBIVKW_AB4s8ZzDH4kd83Y6jlKpqFUPxKO1cdbFRxJfbafS8evJkarqvuxqNDO7qymK94yuGKP603qz2e52K065WAnBVSXYq-KMM6lLUQv5-sX8trhIaU_namaoVmfFcf0IvofW9z4fyfYR-gmyDyOBsSNfMPn7kdwcsh_83wUPjnyf-uzLXYaM5E8ZplwGV46fySXZHVPGIZFfPv8md7NFGMgtRhfiAKNFcocPk4844JjTu-KNgz7hxVM_L35-3f7YfCuvby6vNuvr0opa55IrWXcUEbpGsLrtJGgHyjUOHe0U4xW1DVIHmresUo2uQUnbtcpJNX_MmTgvrhbfLsDeHKIfIB5NAG_-AyHeG4jZ2x6NbaDloEFWUlZWNxo6gZXlEmylkcnZ6-PidYjhYcKUzT5McZzPN7xpallzpk4ssbBsDClFdM9bGTWnyMwSmTlFZp4im1UfFpVHxBcKrutKC_EPJ4STeg</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Li, Jing</creator><creator>Xue, Li</creator><creator>Wang, Guodong</creator><creator>Zhou, Haofei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4242-4181</orcidid><orcidid>https://orcid.org/0000-0002-6963-7064</orcidid></search><sort><creationdate>2023</creationdate><title>Availability Evaluation and Design Optimization of Multi-State k-out-of-n: G Systems With Random Performance Requirements</title><author>Li, Jing ; Xue, Li ; Wang, Guodong ; Zhou, Haofei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-2765d0eead8315bd6a9fa7f8fef0d71240c8e0fa92b147895a76cdb7f67353213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Availability</topic><topic>Complex systems</topic><topic>Constraint modelling</topic><topic>Costs</topic><topic>Design analysis</topic><topic>Design criteria</topic><topic>Design optimization</topic><topic>Genetic algorithms</topic><topic>Maintenance engineering</topic><topic>Marine vehicles</topic><topic>Multi-state k-out-of-n: G system</topic><topic>Operators (mathematics)</topic><topic>Optimization models</topic><topic>Probability theory</topic><topic>recursive algorithm</topic><topic>Reliability engineering</topic><topic>Systems design</topic><topic>Transportation</topic><topic>universal generating function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Xue, Li</creatorcontrib><creatorcontrib>Wang, Guodong</creatorcontrib><creatorcontrib>Zhou, Haofei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jing</au><au>Xue, Li</au><au>Wang, Guodong</au><au>Zhou, Haofei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Availability Evaluation and Design Optimization of Multi-State k-out-of-n: G Systems With Random Performance Requirements</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>119106</spage><epage>119117</epage><pages>119106-119117</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>As an important aspect of reliability theory, availability has now been considered a very meaningful design criterion of repairable system. This paper investigates the availability evaluation and design optimization of the multi-state k-out-of-n: G systems considering random weight threshold. The system availability is evaluated by extending the recursive algorithm (RA) and universal generating function (UGF) technique. Based on the traditional recursive algorithm, the total probability theorem is used to solve the discrete random weight threshold. Another better UGF method combines a new stochastic joint operator, which is suitable for both continuous and discrete random weight thresholds. Furthermore, we constructed two system design optimization models under availability or cost constraint respectively, and genetic algorithm (GA) programming can be applied to obtain the optimal state probability distribution and weight distribution of multi-state components of the suggested system. Finally, through numerical examples, the flexibility and effectiveness of the proposed methods for design optimization are demonstrated. In addition, two evaluation methods are compared to show that the customized UGF method features higher generality than RA in the case of continuous stochastic weight threshold, and higher operational efficiency in the case of increasing component quantity and state. The results can be helpful for engineers to optimize the design of complex systems.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3327431</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4242-4181</orcidid><orcidid>https://orcid.org/0000-0002-6963-7064</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023, Vol.11, p.119106-119117 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2023_3327431 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Availability Complex systems Constraint modelling Costs Design analysis Design criteria Design optimization Genetic algorithms Maintenance engineering Marine vehicles Multi-state k-out-of-n: G system Operators (mathematics) Optimization models Probability theory recursive algorithm Reliability engineering Systems design Transportation universal generating function |
title | Availability Evaluation and Design Optimization of Multi-State k-out-of-n: G Systems With Random Performance Requirements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A53%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Availability%20Evaluation%20and%20Design%20Optimization%20of%20Multi-State%20k-out-of-n:%20G%20Systems%20With%20Random%20Performance%20Requirements&rft.jtitle=IEEE%20access&rft.au=Li,%20Jing&rft.date=2023&rft.volume=11&rft.spage=119106&rft.epage=119117&rft.pages=119106-119117&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3327431&rft_dat=%3Cproquest_cross%3E2885652176%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885652176&rft_id=info:pmid/&rft_ieee_id=10295493&rft_doaj_id=oai_doaj_org_article_c8ab2a9a64664c989ad3e4c26ac49e16&rfr_iscdi=true |