Availability Evaluation and Design Optimization of Multi-State k-out-of-n: G Systems With Random Performance Requirements

As an important aspect of reliability theory, availability has now been considered a very meaningful design criterion of repairable system. This paper investigates the availability evaluation and design optimization of the multi-state k-out-of-n: G systems considering random weight threshold. The sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023, Vol.11, p.119106-119117
Hauptverfasser: Li, Jing, Xue, Li, Wang, Guodong, Zhou, Haofei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119117
container_issue
container_start_page 119106
container_title IEEE access
container_volume 11
creator Li, Jing
Xue, Li
Wang, Guodong
Zhou, Haofei
description As an important aspect of reliability theory, availability has now been considered a very meaningful design criterion of repairable system. This paper investigates the availability evaluation and design optimization of the multi-state k-out-of-n: G systems considering random weight threshold. The system availability is evaluated by extending the recursive algorithm (RA) and universal generating function (UGF) technique. Based on the traditional recursive algorithm, the total probability theorem is used to solve the discrete random weight threshold. Another better UGF method combines a new stochastic joint operator, which is suitable for both continuous and discrete random weight thresholds. Furthermore, we constructed two system design optimization models under availability or cost constraint respectively, and genetic algorithm (GA) programming can be applied to obtain the optimal state probability distribution and weight distribution of multi-state components of the suggested system. Finally, through numerical examples, the flexibility and effectiveness of the proposed methods for design optimization are demonstrated. In addition, two evaluation methods are compared to show that the customized UGF method features higher generality than RA in the case of continuous stochastic weight threshold, and higher operational efficiency in the case of increasing component quantity and state. The results can be helpful for engineers to optimize the design of complex systems.
doi_str_mv 10.1109/ACCESS.2023.3327431
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3327431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10295493</ieee_id><doaj_id>oai_doaj_org_article_c8ab2a9a64664c989ad3e4c26ac49e16</doaj_id><sourcerecordid>2885652176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-2765d0eead8315bd6a9fa7f8fef0d71240c8e0fa92b147895a76cdb7f67353213</originalsourceid><addsrcrecordid>eNpNUV1v1DAQjBBIVKW_AB4s8ZzDH4kd83Y6jlKpqFUPxKO1cdbFRxJfbafS8evJkarqvuxqNDO7qymK94yuGKP603qz2e52K065WAnBVSXYq-KMM6lLUQv5-sX8trhIaU_namaoVmfFcf0IvofW9z4fyfYR-gmyDyOBsSNfMPn7kdwcsh_83wUPjnyf-uzLXYaM5E8ZplwGV46fySXZHVPGIZFfPv8md7NFGMgtRhfiAKNFcocPk4844JjTu-KNgz7hxVM_L35-3f7YfCuvby6vNuvr0opa55IrWXcUEbpGsLrtJGgHyjUOHe0U4xW1DVIHmresUo2uQUnbtcpJNX_MmTgvrhbfLsDeHKIfIB5NAG_-AyHeG4jZ2x6NbaDloEFWUlZWNxo6gZXlEmylkcnZ6-PidYjhYcKUzT5McZzPN7xpallzpk4ssbBsDClFdM9bGTWnyMwSmTlFZp4im1UfFpVHxBcKrutKC_EPJ4STeg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885652176</pqid></control><display><type>article</type><title>Availability Evaluation and Design Optimization of Multi-State k-out-of-n: G Systems With Random Performance Requirements</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Jing ; Xue, Li ; Wang, Guodong ; Zhou, Haofei</creator><creatorcontrib>Li, Jing ; Xue, Li ; Wang, Guodong ; Zhou, Haofei</creatorcontrib><description>As an important aspect of reliability theory, availability has now been considered a very meaningful design criterion of repairable system. This paper investigates the availability evaluation and design optimization of the multi-state k-out-of-n: G systems considering random weight threshold. The system availability is evaluated by extending the recursive algorithm (RA) and universal generating function (UGF) technique. Based on the traditional recursive algorithm, the total probability theorem is used to solve the discrete random weight threshold. Another better UGF method combines a new stochastic joint operator, which is suitable for both continuous and discrete random weight thresholds. Furthermore, we constructed two system design optimization models under availability or cost constraint respectively, and genetic algorithm (GA) programming can be applied to obtain the optimal state probability distribution and weight distribution of multi-state components of the suggested system. Finally, through numerical examples, the flexibility and effectiveness of the proposed methods for design optimization are demonstrated. In addition, two evaluation methods are compared to show that the customized UGF method features higher generality than RA in the case of continuous stochastic weight threshold, and higher operational efficiency in the case of increasing component quantity and state. The results can be helpful for engineers to optimize the design of complex systems.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3327431</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Availability ; Complex systems ; Constraint modelling ; Costs ; Design analysis ; Design criteria ; Design optimization ; Genetic algorithms ; Maintenance engineering ; Marine vehicles ; Multi-state k-out-of-n: G system ; Operators (mathematics) ; Optimization models ; Probability theory ; recursive algorithm ; Reliability engineering ; Systems design ; Transportation ; universal generating function</subject><ispartof>IEEE access, 2023, Vol.11, p.119106-119117</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-2765d0eead8315bd6a9fa7f8fef0d71240c8e0fa92b147895a76cdb7f67353213</cites><orcidid>0000-0002-4242-4181 ; 0000-0002-6963-7064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10295493$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Xue, Li</creatorcontrib><creatorcontrib>Wang, Guodong</creatorcontrib><creatorcontrib>Zhou, Haofei</creatorcontrib><title>Availability Evaluation and Design Optimization of Multi-State k-out-of-n: G Systems With Random Performance Requirements</title><title>IEEE access</title><addtitle>Access</addtitle><description>As an important aspect of reliability theory, availability has now been considered a very meaningful design criterion of repairable system. This paper investigates the availability evaluation and design optimization of the multi-state k-out-of-n: G systems considering random weight threshold. The system availability is evaluated by extending the recursive algorithm (RA) and universal generating function (UGF) technique. Based on the traditional recursive algorithm, the total probability theorem is used to solve the discrete random weight threshold. Another better UGF method combines a new stochastic joint operator, which is suitable for both continuous and discrete random weight thresholds. Furthermore, we constructed two system design optimization models under availability or cost constraint respectively, and genetic algorithm (GA) programming can be applied to obtain the optimal state probability distribution and weight distribution of multi-state components of the suggested system. Finally, through numerical examples, the flexibility and effectiveness of the proposed methods for design optimization are demonstrated. In addition, two evaluation methods are compared to show that the customized UGF method features higher generality than RA in the case of continuous stochastic weight threshold, and higher operational efficiency in the case of increasing component quantity and state. The results can be helpful for engineers to optimize the design of complex systems.</description><subject>Algorithms</subject><subject>Availability</subject><subject>Complex systems</subject><subject>Constraint modelling</subject><subject>Costs</subject><subject>Design analysis</subject><subject>Design criteria</subject><subject>Design optimization</subject><subject>Genetic algorithms</subject><subject>Maintenance engineering</subject><subject>Marine vehicles</subject><subject>Multi-state k-out-of-n: G system</subject><subject>Operators (mathematics)</subject><subject>Optimization models</subject><subject>Probability theory</subject><subject>recursive algorithm</subject><subject>Reliability engineering</subject><subject>Systems design</subject><subject>Transportation</subject><subject>universal generating function</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1v1DAQjBBIVKW_AB4s8ZzDH4kd83Y6jlKpqFUPxKO1cdbFRxJfbafS8evJkarqvuxqNDO7qymK94yuGKP603qz2e52K065WAnBVSXYq-KMM6lLUQv5-sX8trhIaU_namaoVmfFcf0IvofW9z4fyfYR-gmyDyOBsSNfMPn7kdwcsh_83wUPjnyf-uzLXYaM5E8ZplwGV46fySXZHVPGIZFfPv8md7NFGMgtRhfiAKNFcocPk4844JjTu-KNgz7hxVM_L35-3f7YfCuvby6vNuvr0opa55IrWXcUEbpGsLrtJGgHyjUOHe0U4xW1DVIHmresUo2uQUnbtcpJNX_MmTgvrhbfLsDeHKIfIB5NAG_-AyHeG4jZ2x6NbaDloEFWUlZWNxo6gZXlEmylkcnZ6-PidYjhYcKUzT5McZzPN7xpallzpk4ssbBsDClFdM9bGTWnyMwSmTlFZp4im1UfFpVHxBcKrutKC_EPJ4STeg</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Li, Jing</creator><creator>Xue, Li</creator><creator>Wang, Guodong</creator><creator>Zhou, Haofei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4242-4181</orcidid><orcidid>https://orcid.org/0000-0002-6963-7064</orcidid></search><sort><creationdate>2023</creationdate><title>Availability Evaluation and Design Optimization of Multi-State k-out-of-n: G Systems With Random Performance Requirements</title><author>Li, Jing ; Xue, Li ; Wang, Guodong ; Zhou, Haofei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-2765d0eead8315bd6a9fa7f8fef0d71240c8e0fa92b147895a76cdb7f67353213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Availability</topic><topic>Complex systems</topic><topic>Constraint modelling</topic><topic>Costs</topic><topic>Design analysis</topic><topic>Design criteria</topic><topic>Design optimization</topic><topic>Genetic algorithms</topic><topic>Maintenance engineering</topic><topic>Marine vehicles</topic><topic>Multi-state k-out-of-n: G system</topic><topic>Operators (mathematics)</topic><topic>Optimization models</topic><topic>Probability theory</topic><topic>recursive algorithm</topic><topic>Reliability engineering</topic><topic>Systems design</topic><topic>Transportation</topic><topic>universal generating function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Xue, Li</creatorcontrib><creatorcontrib>Wang, Guodong</creatorcontrib><creatorcontrib>Zhou, Haofei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jing</au><au>Xue, Li</au><au>Wang, Guodong</au><au>Zhou, Haofei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Availability Evaluation and Design Optimization of Multi-State k-out-of-n: G Systems With Random Performance Requirements</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>119106</spage><epage>119117</epage><pages>119106-119117</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>As an important aspect of reliability theory, availability has now been considered a very meaningful design criterion of repairable system. This paper investigates the availability evaluation and design optimization of the multi-state k-out-of-n: G systems considering random weight threshold. The system availability is evaluated by extending the recursive algorithm (RA) and universal generating function (UGF) technique. Based on the traditional recursive algorithm, the total probability theorem is used to solve the discrete random weight threshold. Another better UGF method combines a new stochastic joint operator, which is suitable for both continuous and discrete random weight thresholds. Furthermore, we constructed two system design optimization models under availability or cost constraint respectively, and genetic algorithm (GA) programming can be applied to obtain the optimal state probability distribution and weight distribution of multi-state components of the suggested system. Finally, through numerical examples, the flexibility and effectiveness of the proposed methods for design optimization are demonstrated. In addition, two evaluation methods are compared to show that the customized UGF method features higher generality than RA in the case of continuous stochastic weight threshold, and higher operational efficiency in the case of increasing component quantity and state. The results can be helpful for engineers to optimize the design of complex systems.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3327431</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4242-4181</orcidid><orcidid>https://orcid.org/0000-0002-6963-7064</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023, Vol.11, p.119106-119117
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2023_3327431
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Availability
Complex systems
Constraint modelling
Costs
Design analysis
Design criteria
Design optimization
Genetic algorithms
Maintenance engineering
Marine vehicles
Multi-state k-out-of-n: G system
Operators (mathematics)
Optimization models
Probability theory
recursive algorithm
Reliability engineering
Systems design
Transportation
universal generating function
title Availability Evaluation and Design Optimization of Multi-State k-out-of-n: G Systems With Random Performance Requirements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A53%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Availability%20Evaluation%20and%20Design%20Optimization%20of%20Multi-State%20k-out-of-n:%20G%20Systems%20With%20Random%20Performance%20Requirements&rft.jtitle=IEEE%20access&rft.au=Li,%20Jing&rft.date=2023&rft.volume=11&rft.spage=119106&rft.epage=119117&rft.pages=119106-119117&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3327431&rft_dat=%3Cproquest_cross%3E2885652176%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885652176&rft_id=info:pmid/&rft_ieee_id=10295493&rft_doaj_id=oai_doaj_org_article_c8ab2a9a64664c989ad3e4c26ac49e16&rfr_iscdi=true