SAM-UNETR: Clinically Significant Prostate Cancer Segmentation using Transfer Learning from Large Model

Prostate cancer (PCa) is one of the leading causes of cancer-related mortality among men worldwide. Accurate and efficient segmentation of clinically significant prostate cancer (csPCa) regions from magnetic resonance imaging (MRI) plays a crucial role in diagnosis, treatment planning, and monitorin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Alzate-Grisales, Jesus Alejandro, Mora-Rubio, Alejandro, Garcia-Garcia, Francisco, Tabares-Soto, Reinel, Iglesia-Vaya, Maria de la
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Alzate-Grisales, Jesus Alejandro
Mora-Rubio, Alejandro
Garcia-Garcia, Francisco
Tabares-Soto, Reinel
Iglesia-Vaya, Maria de la
description Prostate cancer (PCa) is one of the leading causes of cancer-related mortality among men worldwide. Accurate and efficient segmentation of clinically significant prostate cancer (csPCa) regions from magnetic resonance imaging (MRI) plays a crucial role in diagnosis, treatment planning, and monitoring of the disease, however, this is a challenging task even for the specialized clinicians. This study presents SAM-UNETR, a novel model for segmenting csPCa regions from MRI images. SAM-UNETR combines a transformer-encoder from the Segment Anything Model (SAM), a versatile segmentation model trained on 11 million images, with a residual-convolution decoder inspired by UNETR. The model uses multiple image modalities and applies prostate zone segmentation, normalization, and data augmentation as preprocessing steps. The performance of SAM-UNETR is compared with three other models using the same strategy and preprocessing. The results show that SAM-UNETR achieves superior reliability and accuracy in csPCa segmentation, especially when using transfer learning for the image encoder. This demonstrates the adaptability of large-scale models for different tasks. SAM-UNETR attains a Dice Score of 0.467 and an AUROC of 0.77 for csPCa prediction.
doi_str_mv 10.1109/ACCESS.2023.3326882
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3326882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10292632</ieee_id><doaj_id>oai_doaj_org_article_0f12c7a8a8014199b8c31630cb946a84</doaj_id><sourcerecordid>2884899139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-4107d597a95ba789e8d416f79acc42802f2b1f3d1fe916b9ab2e728d7f0b3b333</originalsourceid><addsrcrecordid>eNpNUctu2zAQFIoEaJDkC9oDgZ7lkFw9yN4MwXkAzgOVcyZWFCnQkMmUkg_5-9BVUGQvu5zdGS52suwHoyvGqLxZN82mbVecclgB8EoI_i274KySOZRQnX2pv2fX07SnKUSCyvoiG9r1Y_76tNn9-U2a0XmncRzfSesG72x6-Jm8xDDNOBvSoNcmktYMB-MT4oInx8n5gewi-smm3tZg9CfExnAgW4yDIY-hN-NVdm5xnMz1Z77MXm83u-Y-3z7fPTTrba6hlHNeMFr3paxRlh3WQhrRF6yytUStCy4ot7xjFnpmjWRVJ7Hjpuairy3toAOAy-xh0e0D7tVbdAeM7yqgU_-AEAeFcXZ6NIpaxnWNAgVlBZOyExpYBVR3sqhQFEnr16L1FsPfo5lmtQ_H6NP6igtRCCkZyDQFy5ROd5qisf9_ZVSdDFKLQepkkPo0KLF-LixnjPnC4JJXwOEDm9CLLg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884899139</pqid></control><display><type>article</type><title>SAM-UNETR: Clinically Significant Prostate Cancer Segmentation using Transfer Learning from Large Model</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Alzate-Grisales, Jesus Alejandro ; Mora-Rubio, Alejandro ; Garcia-Garcia, Francisco ; Tabares-Soto, Reinel ; Iglesia-Vaya, Maria de la</creator><creatorcontrib>Alzate-Grisales, Jesus Alejandro ; Mora-Rubio, Alejandro ; Garcia-Garcia, Francisco ; Tabares-Soto, Reinel ; Iglesia-Vaya, Maria de la</creatorcontrib><description>Prostate cancer (PCa) is one of the leading causes of cancer-related mortality among men worldwide. Accurate and efficient segmentation of clinically significant prostate cancer (csPCa) regions from magnetic resonance imaging (MRI) plays a crucial role in diagnosis, treatment planning, and monitoring of the disease, however, this is a challenging task even for the specialized clinicians. This study presents SAM-UNETR, a novel model for segmenting csPCa regions from MRI images. SAM-UNETR combines a transformer-encoder from the Segment Anything Model (SAM), a versatile segmentation model trained on 11 million images, with a residual-convolution decoder inspired by UNETR. The model uses multiple image modalities and applies prostate zone segmentation, normalization, and data augmentation as preprocessing steps. The performance of SAM-UNETR is compared with three other models using the same strategy and preprocessing. The results show that SAM-UNETR achieves superior reliability and accuracy in csPCa segmentation, especially when using transfer learning for the image encoder. This demonstrates the adaptability of large-scale models for different tasks. SAM-UNETR attains a Dice Score of 0.467 and an AUROC of 0.77 for csPCa prediction.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3326882</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial intelligence ; Clinical significance ; Coders ; Data augmentation ; deep learning ; Image segmentation ; Learning ; Lesions ; Magnetic resonance imaging ; Medical imaging ; Preprocessing ; Principal component analysis ; Prostate cancer ; Scale models ; semantic segmentation ; Task analysis ; Training ; Transfer learning</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-4107d597a95ba789e8d416f79acc42802f2b1f3d1fe916b9ab2e728d7f0b3b333</cites><orcidid>0000-0003-4505-8399 ; 0000-0001-6012-8645 ; 0000-0002-4978-5211 ; 0000-0001-8354-5636 ; 0000-0003-1021-2050</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10292632$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,27637,27928,27929,54937</link.rule.ids></links><search><creatorcontrib>Alzate-Grisales, Jesus Alejandro</creatorcontrib><creatorcontrib>Mora-Rubio, Alejandro</creatorcontrib><creatorcontrib>Garcia-Garcia, Francisco</creatorcontrib><creatorcontrib>Tabares-Soto, Reinel</creatorcontrib><creatorcontrib>Iglesia-Vaya, Maria de la</creatorcontrib><title>SAM-UNETR: Clinically Significant Prostate Cancer Segmentation using Transfer Learning from Large Model</title><title>IEEE access</title><addtitle>Access</addtitle><description>Prostate cancer (PCa) is one of the leading causes of cancer-related mortality among men worldwide. Accurate and efficient segmentation of clinically significant prostate cancer (csPCa) regions from magnetic resonance imaging (MRI) plays a crucial role in diagnosis, treatment planning, and monitoring of the disease, however, this is a challenging task even for the specialized clinicians. This study presents SAM-UNETR, a novel model for segmenting csPCa regions from MRI images. SAM-UNETR combines a transformer-encoder from the Segment Anything Model (SAM), a versatile segmentation model trained on 11 million images, with a residual-convolution decoder inspired by UNETR. The model uses multiple image modalities and applies prostate zone segmentation, normalization, and data augmentation as preprocessing steps. The performance of SAM-UNETR is compared with three other models using the same strategy and preprocessing. The results show that SAM-UNETR achieves superior reliability and accuracy in csPCa segmentation, especially when using transfer learning for the image encoder. This demonstrates the adaptability of large-scale models for different tasks. SAM-UNETR attains a Dice Score of 0.467 and an AUROC of 0.77 for csPCa prediction.</description><subject>Artificial intelligence</subject><subject>Clinical significance</subject><subject>Coders</subject><subject>Data augmentation</subject><subject>deep learning</subject><subject>Image segmentation</subject><subject>Learning</subject><subject>Lesions</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Preprocessing</subject><subject>Principal component analysis</subject><subject>Prostate cancer</subject><subject>Scale models</subject><subject>semantic segmentation</subject><subject>Task analysis</subject><subject>Training</subject><subject>Transfer learning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctu2zAQFIoEaJDkC9oDgZ7lkFw9yN4MwXkAzgOVcyZWFCnQkMmUkg_5-9BVUGQvu5zdGS52suwHoyvGqLxZN82mbVecclgB8EoI_i274KySOZRQnX2pv2fX07SnKUSCyvoiG9r1Y_76tNn9-U2a0XmncRzfSesG72x6-Jm8xDDNOBvSoNcmktYMB-MT4oInx8n5gewi-smm3tZg9CfExnAgW4yDIY-hN-NVdm5xnMz1Z77MXm83u-Y-3z7fPTTrba6hlHNeMFr3paxRlh3WQhrRF6yytUStCy4ot7xjFnpmjWRVJ7Hjpuairy3toAOAy-xh0e0D7tVbdAeM7yqgU_-AEAeFcXZ6NIpaxnWNAgVlBZOyExpYBVR3sqhQFEnr16L1FsPfo5lmtQ_H6NP6igtRCCkZyDQFy5ROd5qisf9_ZVSdDFKLQepkkPo0KLF-LixnjPnC4JJXwOEDm9CLLg</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Alzate-Grisales, Jesus Alejandro</creator><creator>Mora-Rubio, Alejandro</creator><creator>Garcia-Garcia, Francisco</creator><creator>Tabares-Soto, Reinel</creator><creator>Iglesia-Vaya, Maria de la</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4505-8399</orcidid><orcidid>https://orcid.org/0000-0001-6012-8645</orcidid><orcidid>https://orcid.org/0000-0002-4978-5211</orcidid><orcidid>https://orcid.org/0000-0001-8354-5636</orcidid><orcidid>https://orcid.org/0000-0003-1021-2050</orcidid></search><sort><creationdate>20230101</creationdate><title>SAM-UNETR: Clinically Significant Prostate Cancer Segmentation using Transfer Learning from Large Model</title><author>Alzate-Grisales, Jesus Alejandro ; Mora-Rubio, Alejandro ; Garcia-Garcia, Francisco ; Tabares-Soto, Reinel ; Iglesia-Vaya, Maria de la</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-4107d597a95ba789e8d416f79acc42802f2b1f3d1fe916b9ab2e728d7f0b3b333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Clinical significance</topic><topic>Coders</topic><topic>Data augmentation</topic><topic>deep learning</topic><topic>Image segmentation</topic><topic>Learning</topic><topic>Lesions</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Preprocessing</topic><topic>Principal component analysis</topic><topic>Prostate cancer</topic><topic>Scale models</topic><topic>semantic segmentation</topic><topic>Task analysis</topic><topic>Training</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alzate-Grisales, Jesus Alejandro</creatorcontrib><creatorcontrib>Mora-Rubio, Alejandro</creatorcontrib><creatorcontrib>Garcia-Garcia, Francisco</creatorcontrib><creatorcontrib>Tabares-Soto, Reinel</creatorcontrib><creatorcontrib>Iglesia-Vaya, Maria de la</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alzate-Grisales, Jesus Alejandro</au><au>Mora-Rubio, Alejandro</au><au>Garcia-Garcia, Francisco</au><au>Tabares-Soto, Reinel</au><au>Iglesia-Vaya, Maria de la</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SAM-UNETR: Clinically Significant Prostate Cancer Segmentation using Transfer Learning from Large Model</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Prostate cancer (PCa) is one of the leading causes of cancer-related mortality among men worldwide. Accurate and efficient segmentation of clinically significant prostate cancer (csPCa) regions from magnetic resonance imaging (MRI) plays a crucial role in diagnosis, treatment planning, and monitoring of the disease, however, this is a challenging task even for the specialized clinicians. This study presents SAM-UNETR, a novel model for segmenting csPCa regions from MRI images. SAM-UNETR combines a transformer-encoder from the Segment Anything Model (SAM), a versatile segmentation model trained on 11 million images, with a residual-convolution decoder inspired by UNETR. The model uses multiple image modalities and applies prostate zone segmentation, normalization, and data augmentation as preprocessing steps. The performance of SAM-UNETR is compared with three other models using the same strategy and preprocessing. The results show that SAM-UNETR achieves superior reliability and accuracy in csPCa segmentation, especially when using transfer learning for the image encoder. This demonstrates the adaptability of large-scale models for different tasks. SAM-UNETR attains a Dice Score of 0.467 and an AUROC of 0.77 for csPCa prediction.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3326882</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4505-8399</orcidid><orcidid>https://orcid.org/0000-0001-6012-8645</orcidid><orcidid>https://orcid.org/0000-0002-4978-5211</orcidid><orcidid>https://orcid.org/0000-0001-8354-5636</orcidid><orcidid>https://orcid.org/0000-0003-1021-2050</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2023_3326882
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals
subjects Artificial intelligence
Clinical significance
Coders
Data augmentation
deep learning
Image segmentation
Learning
Lesions
Magnetic resonance imaging
Medical imaging
Preprocessing
Principal component analysis
Prostate cancer
Scale models
semantic segmentation
Task analysis
Training
Transfer learning
title SAM-UNETR: Clinically Significant Prostate Cancer Segmentation using Transfer Learning from Large Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T13%3A58%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SAM-UNETR:%20Clinically%20Significant%20Prostate%20Cancer%20Segmentation%20using%20Transfer%20Learning%20from%20Large%20Model&rft.jtitle=IEEE%20access&rft.au=Alzate-Grisales,%20Jesus%20Alejandro&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3326882&rft_dat=%3Cproquest_cross%3E2884899139%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2884899139&rft_id=info:pmid/&rft_ieee_id=10292632&rft_doaj_id=oai_doaj_org_article_0f12c7a8a8014199b8c31630cb946a84&rfr_iscdi=true