SAM-UNETR: Clinically Significant Prostate Cancer Segmentation using Transfer Learning from Large Model
Prostate cancer (PCa) is one of the leading causes of cancer-related mortality among men worldwide. Accurate and efficient segmentation of clinically significant prostate cancer (csPCa) regions from magnetic resonance imaging (MRI) plays a crucial role in diagnosis, treatment planning, and monitorin...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Alzate-Grisales, Jesus Alejandro Mora-Rubio, Alejandro Garcia-Garcia, Francisco Tabares-Soto, Reinel Iglesia-Vaya, Maria de la |
description | Prostate cancer (PCa) is one of the leading causes of cancer-related mortality among men worldwide. Accurate and efficient segmentation of clinically significant prostate cancer (csPCa) regions from magnetic resonance imaging (MRI) plays a crucial role in diagnosis, treatment planning, and monitoring of the disease, however, this is a challenging task even for the specialized clinicians. This study presents SAM-UNETR, a novel model for segmenting csPCa regions from MRI images. SAM-UNETR combines a transformer-encoder from the Segment Anything Model (SAM), a versatile segmentation model trained on 11 million images, with a residual-convolution decoder inspired by UNETR. The model uses multiple image modalities and applies prostate zone segmentation, normalization, and data augmentation as preprocessing steps. The performance of SAM-UNETR is compared with three other models using the same strategy and preprocessing. The results show that SAM-UNETR achieves superior reliability and accuracy in csPCa segmentation, especially when using transfer learning for the image encoder. This demonstrates the adaptability of large-scale models for different tasks. SAM-UNETR attains a Dice Score of 0.467 and an AUROC of 0.77 for csPCa prediction. |
doi_str_mv | 10.1109/ACCESS.2023.3326882 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3326882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10292632</ieee_id><doaj_id>oai_doaj_org_article_0f12c7a8a8014199b8c31630cb946a84</doaj_id><sourcerecordid>2884899139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-4107d597a95ba789e8d416f79acc42802f2b1f3d1fe916b9ab2e728d7f0b3b333</originalsourceid><addsrcrecordid>eNpNUctu2zAQFIoEaJDkC9oDgZ7lkFw9yN4MwXkAzgOVcyZWFCnQkMmUkg_5-9BVUGQvu5zdGS52suwHoyvGqLxZN82mbVecclgB8EoI_i274KySOZRQnX2pv2fX07SnKUSCyvoiG9r1Y_76tNn9-U2a0XmncRzfSesG72x6-Jm8xDDNOBvSoNcmktYMB-MT4oInx8n5gewi-smm3tZg9CfExnAgW4yDIY-hN-NVdm5xnMz1Z77MXm83u-Y-3z7fPTTrba6hlHNeMFr3paxRlh3WQhrRF6yytUStCy4ot7xjFnpmjWRVJ7Hjpuairy3toAOAy-xh0e0D7tVbdAeM7yqgU_-AEAeFcXZ6NIpaxnWNAgVlBZOyExpYBVR3sqhQFEnr16L1FsPfo5lmtQ_H6NP6igtRCCkZyDQFy5ROd5qisf9_ZVSdDFKLQepkkPo0KLF-LixnjPnC4JJXwOEDm9CLLg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884899139</pqid></control><display><type>article</type><title>SAM-UNETR: Clinically Significant Prostate Cancer Segmentation using Transfer Learning from Large Model</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Alzate-Grisales, Jesus Alejandro ; Mora-Rubio, Alejandro ; Garcia-Garcia, Francisco ; Tabares-Soto, Reinel ; Iglesia-Vaya, Maria de la</creator><creatorcontrib>Alzate-Grisales, Jesus Alejandro ; Mora-Rubio, Alejandro ; Garcia-Garcia, Francisco ; Tabares-Soto, Reinel ; Iglesia-Vaya, Maria de la</creatorcontrib><description>Prostate cancer (PCa) is one of the leading causes of cancer-related mortality among men worldwide. Accurate and efficient segmentation of clinically significant prostate cancer (csPCa) regions from magnetic resonance imaging (MRI) plays a crucial role in diagnosis, treatment planning, and monitoring of the disease, however, this is a challenging task even for the specialized clinicians. This study presents SAM-UNETR, a novel model for segmenting csPCa regions from MRI images. SAM-UNETR combines a transformer-encoder from the Segment Anything Model (SAM), a versatile segmentation model trained on 11 million images, with a residual-convolution decoder inspired by UNETR. The model uses multiple image modalities and applies prostate zone segmentation, normalization, and data augmentation as preprocessing steps. The performance of SAM-UNETR is compared with three other models using the same strategy and preprocessing. The results show that SAM-UNETR achieves superior reliability and accuracy in csPCa segmentation, especially when using transfer learning for the image encoder. This demonstrates the adaptability of large-scale models for different tasks. SAM-UNETR attains a Dice Score of 0.467 and an AUROC of 0.77 for csPCa prediction.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3326882</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial intelligence ; Clinical significance ; Coders ; Data augmentation ; deep learning ; Image segmentation ; Learning ; Lesions ; Magnetic resonance imaging ; Medical imaging ; Preprocessing ; Principal component analysis ; Prostate cancer ; Scale models ; semantic segmentation ; Task analysis ; Training ; Transfer learning</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-4107d597a95ba789e8d416f79acc42802f2b1f3d1fe916b9ab2e728d7f0b3b333</cites><orcidid>0000-0003-4505-8399 ; 0000-0001-6012-8645 ; 0000-0002-4978-5211 ; 0000-0001-8354-5636 ; 0000-0003-1021-2050</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10292632$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,27637,27928,27929,54937</link.rule.ids></links><search><creatorcontrib>Alzate-Grisales, Jesus Alejandro</creatorcontrib><creatorcontrib>Mora-Rubio, Alejandro</creatorcontrib><creatorcontrib>Garcia-Garcia, Francisco</creatorcontrib><creatorcontrib>Tabares-Soto, Reinel</creatorcontrib><creatorcontrib>Iglesia-Vaya, Maria de la</creatorcontrib><title>SAM-UNETR: Clinically Significant Prostate Cancer Segmentation using Transfer Learning from Large Model</title><title>IEEE access</title><addtitle>Access</addtitle><description>Prostate cancer (PCa) is one of the leading causes of cancer-related mortality among men worldwide. Accurate and efficient segmentation of clinically significant prostate cancer (csPCa) regions from magnetic resonance imaging (MRI) plays a crucial role in diagnosis, treatment planning, and monitoring of the disease, however, this is a challenging task even for the specialized clinicians. This study presents SAM-UNETR, a novel model for segmenting csPCa regions from MRI images. SAM-UNETR combines a transformer-encoder from the Segment Anything Model (SAM), a versatile segmentation model trained on 11 million images, with a residual-convolution decoder inspired by UNETR. The model uses multiple image modalities and applies prostate zone segmentation, normalization, and data augmentation as preprocessing steps. The performance of SAM-UNETR is compared with three other models using the same strategy and preprocessing. The results show that SAM-UNETR achieves superior reliability and accuracy in csPCa segmentation, especially when using transfer learning for the image encoder. This demonstrates the adaptability of large-scale models for different tasks. SAM-UNETR attains a Dice Score of 0.467 and an AUROC of 0.77 for csPCa prediction.</description><subject>Artificial intelligence</subject><subject>Clinical significance</subject><subject>Coders</subject><subject>Data augmentation</subject><subject>deep learning</subject><subject>Image segmentation</subject><subject>Learning</subject><subject>Lesions</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Preprocessing</subject><subject>Principal component analysis</subject><subject>Prostate cancer</subject><subject>Scale models</subject><subject>semantic segmentation</subject><subject>Task analysis</subject><subject>Training</subject><subject>Transfer learning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctu2zAQFIoEaJDkC9oDgZ7lkFw9yN4MwXkAzgOVcyZWFCnQkMmUkg_5-9BVUGQvu5zdGS52suwHoyvGqLxZN82mbVecclgB8EoI_i274KySOZRQnX2pv2fX07SnKUSCyvoiG9r1Y_76tNn9-U2a0XmncRzfSesG72x6-Jm8xDDNOBvSoNcmktYMB-MT4oInx8n5gewi-smm3tZg9CfExnAgW4yDIY-hN-NVdm5xnMz1Z77MXm83u-Y-3z7fPTTrba6hlHNeMFr3paxRlh3WQhrRF6yytUStCy4ot7xjFnpmjWRVJ7Hjpuairy3toAOAy-xh0e0D7tVbdAeM7yqgU_-AEAeFcXZ6NIpaxnWNAgVlBZOyExpYBVR3sqhQFEnr16L1FsPfo5lmtQ_H6NP6igtRCCkZyDQFy5ROd5qisf9_ZVSdDFKLQepkkPo0KLF-LixnjPnC4JJXwOEDm9CLLg</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Alzate-Grisales, Jesus Alejandro</creator><creator>Mora-Rubio, Alejandro</creator><creator>Garcia-Garcia, Francisco</creator><creator>Tabares-Soto, Reinel</creator><creator>Iglesia-Vaya, Maria de la</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4505-8399</orcidid><orcidid>https://orcid.org/0000-0001-6012-8645</orcidid><orcidid>https://orcid.org/0000-0002-4978-5211</orcidid><orcidid>https://orcid.org/0000-0001-8354-5636</orcidid><orcidid>https://orcid.org/0000-0003-1021-2050</orcidid></search><sort><creationdate>20230101</creationdate><title>SAM-UNETR: Clinically Significant Prostate Cancer Segmentation using Transfer Learning from Large Model</title><author>Alzate-Grisales, Jesus Alejandro ; Mora-Rubio, Alejandro ; Garcia-Garcia, Francisco ; Tabares-Soto, Reinel ; Iglesia-Vaya, Maria de la</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-4107d597a95ba789e8d416f79acc42802f2b1f3d1fe916b9ab2e728d7f0b3b333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Clinical significance</topic><topic>Coders</topic><topic>Data augmentation</topic><topic>deep learning</topic><topic>Image segmentation</topic><topic>Learning</topic><topic>Lesions</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Preprocessing</topic><topic>Principal component analysis</topic><topic>Prostate cancer</topic><topic>Scale models</topic><topic>semantic segmentation</topic><topic>Task analysis</topic><topic>Training</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alzate-Grisales, Jesus Alejandro</creatorcontrib><creatorcontrib>Mora-Rubio, Alejandro</creatorcontrib><creatorcontrib>Garcia-Garcia, Francisco</creatorcontrib><creatorcontrib>Tabares-Soto, Reinel</creatorcontrib><creatorcontrib>Iglesia-Vaya, Maria de la</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alzate-Grisales, Jesus Alejandro</au><au>Mora-Rubio, Alejandro</au><au>Garcia-Garcia, Francisco</au><au>Tabares-Soto, Reinel</au><au>Iglesia-Vaya, Maria de la</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SAM-UNETR: Clinically Significant Prostate Cancer Segmentation using Transfer Learning from Large Model</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Prostate cancer (PCa) is one of the leading causes of cancer-related mortality among men worldwide. Accurate and efficient segmentation of clinically significant prostate cancer (csPCa) regions from magnetic resonance imaging (MRI) plays a crucial role in diagnosis, treatment planning, and monitoring of the disease, however, this is a challenging task even for the specialized clinicians. This study presents SAM-UNETR, a novel model for segmenting csPCa regions from MRI images. SAM-UNETR combines a transformer-encoder from the Segment Anything Model (SAM), a versatile segmentation model trained on 11 million images, with a residual-convolution decoder inspired by UNETR. The model uses multiple image modalities and applies prostate zone segmentation, normalization, and data augmentation as preprocessing steps. The performance of SAM-UNETR is compared with three other models using the same strategy and preprocessing. The results show that SAM-UNETR achieves superior reliability and accuracy in csPCa segmentation, especially when using transfer learning for the image encoder. This demonstrates the adaptability of large-scale models for different tasks. SAM-UNETR attains a Dice Score of 0.467 and an AUROC of 0.77 for csPCa prediction.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3326882</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4505-8399</orcidid><orcidid>https://orcid.org/0000-0001-6012-8645</orcidid><orcidid>https://orcid.org/0000-0002-4978-5211</orcidid><orcidid>https://orcid.org/0000-0001-8354-5636</orcidid><orcidid>https://orcid.org/0000-0003-1021-2050</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2023_3326882 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals |
subjects | Artificial intelligence Clinical significance Coders Data augmentation deep learning Image segmentation Learning Lesions Magnetic resonance imaging Medical imaging Preprocessing Principal component analysis Prostate cancer Scale models semantic segmentation Task analysis Training Transfer learning |
title | SAM-UNETR: Clinically Significant Prostate Cancer Segmentation using Transfer Learning from Large Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T13%3A58%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SAM-UNETR:%20Clinically%20Significant%20Prostate%20Cancer%20Segmentation%20using%20Transfer%20Learning%20from%20Large%20Model&rft.jtitle=IEEE%20access&rft.au=Alzate-Grisales,%20Jesus%20Alejandro&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3326882&rft_dat=%3Cproquest_cross%3E2884899139%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2884899139&rft_id=info:pmid/&rft_ieee_id=10292632&rft_doaj_id=oai_doaj_org_article_0f12c7a8a8014199b8c31630cb946a84&rfr_iscdi=true |