A Novel Federated Edge Learning Approach for Detecting Cyberattacks in IoT Infrastructures
The advancement of the communications system has resulted in the rise of the Internet of Things (IoT), which has increased the importance of cybersecurity research. IoT, which incorporates a range of devices into networks to offer complex and intelligent services, must maintain user privacy and deal...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023, Vol.11, p.112189-112198 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 112198 |
---|---|
container_issue | |
container_start_page | 112189 |
container_title | IEEE access |
container_volume | 11 |
creator | Abbas, Sidra Hejaili, Abdullah Al Sampedro, Gabriel Avelino Abisado, Mideth Almadhor, Ahmad S. Shahzad, Tariq Ouahada, Khmaies |
description | The advancement of the communications system has resulted in the rise of the Internet of Things (IoT), which has increased the importance of cybersecurity research. IoT, which incorporates a range of devices into networks to offer complex and intelligent services, must maintain user privacy and deal with attacks such as spoofing, denial of service (DoS), jamming, and eavesdropping. Attacks change with time, and new ones develop every day. Numerous researchers look into IoT system attack models and evaluate machine, deep, and federated learning-based IoT security approaches. However, existing methods do not produce reliable and encouraging performance. Therefore, this study proposes a novel approach for leveraging federated learning to identify large attacks on IoT devices using the novel CIC_IoT 2023 dataset. The approach uses a federated deep neural network to achieve precise categorization. Before model training, the data was preprocessed using various data preparation techniques to guarantee the creation of a trustworthy dataset for categorization. The suggested approach involves feature normalization, data balancing, and model prediction utilizing federated learning. The experimental findings show that the proposed approach attained an exceptional accuracy of 99.00%, endorsing it for attack detection. |
doi_str_mv | 10.1109/ACCESS.2023.3318866 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3318866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10261980</ieee_id><doaj_id>oai_doaj_org_article_b597fc21da57430c8d5887a43ca9b1ce</doaj_id><sourcerecordid>2878509221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-3a411580c94d94418697d29ef12055b7a6782efd2af3e609d5c0ba4656515e1e3</originalsourceid><addsrcrecordid>eNpNUctu2zAQFIIGaJDmC9IDgZ7t8CFS5NFQ7caAkR6cXHIhVuTKkeuKLkkXyN9XqozAe9nFYGZ2F1MU94zOGaPmYVHXy-12zikXcyGY1kpdFTecKTMTUqhPF_Pn4i6lPR1KD5CsborXBXkKf_FAVugxQkZPln6HZIMQ-67fkcXxGAO4N9KGSL5jRpdHuH5vRnoG9yuRrifr8EzWfRsh5Xhy-RQxfSmuWzgkvDv32-JltXyuH2ebnz_W9WIzcyU1eSagZExq6kzpTVkyrUzlucGWcSplU4GqNMfWc2gFKmq8dLSBUkklmUSG4rZYT74-wN4eY_cb4rsN0Nn_QIg7CzF37oC2kaZqHWceZFUK6rSXWldQCgemYW70-jZ5DU__OWHKdh9OsR_Ot1xXWlLDORtYYmK5GFKK2H5sZdSOmdgpEztmYs-ZDKqvk6pDxAsFV8xoKv4BgsqGqw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878509221</pqid></control><display><type>article</type><title>A Novel Federated Edge Learning Approach for Detecting Cyberattacks in IoT Infrastructures</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Abbas, Sidra ; Hejaili, Abdullah Al ; Sampedro, Gabriel Avelino ; Abisado, Mideth ; Almadhor, Ahmad S. ; Shahzad, Tariq ; Ouahada, Khmaies</creator><creatorcontrib>Abbas, Sidra ; Hejaili, Abdullah Al ; Sampedro, Gabriel Avelino ; Abisado, Mideth ; Almadhor, Ahmad S. ; Shahzad, Tariq ; Ouahada, Khmaies</creatorcontrib><description>The advancement of the communications system has resulted in the rise of the Internet of Things (IoT), which has increased the importance of cybersecurity research. IoT, which incorporates a range of devices into networks to offer complex and intelligent services, must maintain user privacy and deal with attacks such as spoofing, denial of service (DoS), jamming, and eavesdropping. Attacks change with time, and new ones develop every day. Numerous researchers look into IoT system attack models and evaluate machine, deep, and federated learning-based IoT security approaches. However, existing methods do not produce reliable and encouraging performance. Therefore, this study proposes a novel approach for leveraging federated learning to identify large attacks on IoT devices using the novel CIC_IoT 2023 dataset. The approach uses a federated deep neural network to achieve precise categorization. Before model training, the data was preprocessed using various data preparation techniques to guarantee the creation of a trustworthy dataset for categorization. The suggested approach involves feature normalization, data balancing, and model prediction utilizing federated learning. The experimental findings show that the proposed approach attained an exceptional accuracy of 99.00%, endorsing it for attack detection.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3318866</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Classification ; Communications systems ; Cybersecurity ; Data models ; Datasets ; Deep learning ; Denial of service attacks ; Federated learning ; Internet of Things ; Internet of Things (IoT) ; Jamming ; Machine learning ; networks attacks ; preservational deep learning ; Privacy ; Production methods ; Security ; Servers ; Spoofing ; Training</subject><ispartof>IEEE access, 2023, Vol.11, p.112189-112198</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-3a411580c94d94418697d29ef12055b7a6782efd2af3e609d5c0ba4656515e1e3</citedby><cites>FETCH-LOGICAL-c409t-3a411580c94d94418697d29ef12055b7a6782efd2af3e609d5c0ba4656515e1e3</cites><orcidid>0000-0002-8462-5061 ; 0000-0003-2354-4409 ; 0000-0002-8665-1669 ; 0009-0001-0117-4390 ; 0000-0001-5718-5585</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10261980$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Abbas, Sidra</creatorcontrib><creatorcontrib>Hejaili, Abdullah Al</creatorcontrib><creatorcontrib>Sampedro, Gabriel Avelino</creatorcontrib><creatorcontrib>Abisado, Mideth</creatorcontrib><creatorcontrib>Almadhor, Ahmad S.</creatorcontrib><creatorcontrib>Shahzad, Tariq</creatorcontrib><creatorcontrib>Ouahada, Khmaies</creatorcontrib><title>A Novel Federated Edge Learning Approach for Detecting Cyberattacks in IoT Infrastructures</title><title>IEEE access</title><addtitle>Access</addtitle><description>The advancement of the communications system has resulted in the rise of the Internet of Things (IoT), which has increased the importance of cybersecurity research. IoT, which incorporates a range of devices into networks to offer complex and intelligent services, must maintain user privacy and deal with attacks such as spoofing, denial of service (DoS), jamming, and eavesdropping. Attacks change with time, and new ones develop every day. Numerous researchers look into IoT system attack models and evaluate machine, deep, and federated learning-based IoT security approaches. However, existing methods do not produce reliable and encouraging performance. Therefore, this study proposes a novel approach for leveraging federated learning to identify large attacks on IoT devices using the novel CIC_IoT 2023 dataset. The approach uses a federated deep neural network to achieve precise categorization. Before model training, the data was preprocessed using various data preparation techniques to guarantee the creation of a trustworthy dataset for categorization. The suggested approach involves feature normalization, data balancing, and model prediction utilizing federated learning. The experimental findings show that the proposed approach attained an exceptional accuracy of 99.00%, endorsing it for attack detection.</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Communications systems</subject><subject>Cybersecurity</subject><subject>Data models</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Denial of service attacks</subject><subject>Federated learning</subject><subject>Internet of Things</subject><subject>Internet of Things (IoT)</subject><subject>Jamming</subject><subject>Machine learning</subject><subject>networks attacks</subject><subject>preservational deep learning</subject><subject>Privacy</subject><subject>Production methods</subject><subject>Security</subject><subject>Servers</subject><subject>Spoofing</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctu2zAQFIIGaJDmC9IDgZ7t8CFS5NFQ7caAkR6cXHIhVuTKkeuKLkkXyN9XqozAe9nFYGZ2F1MU94zOGaPmYVHXy-12zikXcyGY1kpdFTecKTMTUqhPF_Pn4i6lPR1KD5CsborXBXkKf_FAVugxQkZPln6HZIMQ-67fkcXxGAO4N9KGSL5jRpdHuH5vRnoG9yuRrifr8EzWfRsh5Xhy-RQxfSmuWzgkvDv32-JltXyuH2ebnz_W9WIzcyU1eSagZExq6kzpTVkyrUzlucGWcSplU4GqNMfWc2gFKmq8dLSBUkklmUSG4rZYT74-wN4eY_cb4rsN0Nn_QIg7CzF37oC2kaZqHWceZFUK6rSXWldQCgemYW70-jZ5DU__OWHKdh9OsR_Ot1xXWlLDORtYYmK5GFKK2H5sZdSOmdgpEztmYs-ZDKqvk6pDxAsFV8xoKv4BgsqGqw</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Abbas, Sidra</creator><creator>Hejaili, Abdullah Al</creator><creator>Sampedro, Gabriel Avelino</creator><creator>Abisado, Mideth</creator><creator>Almadhor, Ahmad S.</creator><creator>Shahzad, Tariq</creator><creator>Ouahada, Khmaies</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8462-5061</orcidid><orcidid>https://orcid.org/0000-0003-2354-4409</orcidid><orcidid>https://orcid.org/0000-0002-8665-1669</orcidid><orcidid>https://orcid.org/0009-0001-0117-4390</orcidid><orcidid>https://orcid.org/0000-0001-5718-5585</orcidid></search><sort><creationdate>2023</creationdate><title>A Novel Federated Edge Learning Approach for Detecting Cyberattacks in IoT Infrastructures</title><author>Abbas, Sidra ; Hejaili, Abdullah Al ; Sampedro, Gabriel Avelino ; Abisado, Mideth ; Almadhor, Ahmad S. ; Shahzad, Tariq ; Ouahada, Khmaies</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-3a411580c94d94418697d29ef12055b7a6782efd2af3e609d5c0ba4656515e1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Communications systems</topic><topic>Cybersecurity</topic><topic>Data models</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Denial of service attacks</topic><topic>Federated learning</topic><topic>Internet of Things</topic><topic>Internet of Things (IoT)</topic><topic>Jamming</topic><topic>Machine learning</topic><topic>networks attacks</topic><topic>preservational deep learning</topic><topic>Privacy</topic><topic>Production methods</topic><topic>Security</topic><topic>Servers</topic><topic>Spoofing</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbas, Sidra</creatorcontrib><creatorcontrib>Hejaili, Abdullah Al</creatorcontrib><creatorcontrib>Sampedro, Gabriel Avelino</creatorcontrib><creatorcontrib>Abisado, Mideth</creatorcontrib><creatorcontrib>Almadhor, Ahmad S.</creatorcontrib><creatorcontrib>Shahzad, Tariq</creatorcontrib><creatorcontrib>Ouahada, Khmaies</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbas, Sidra</au><au>Hejaili, Abdullah Al</au><au>Sampedro, Gabriel Avelino</au><au>Abisado, Mideth</au><au>Almadhor, Ahmad S.</au><au>Shahzad, Tariq</au><au>Ouahada, Khmaies</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Federated Edge Learning Approach for Detecting Cyberattacks in IoT Infrastructures</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>112189</spage><epage>112198</epage><pages>112189-112198</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The advancement of the communications system has resulted in the rise of the Internet of Things (IoT), which has increased the importance of cybersecurity research. IoT, which incorporates a range of devices into networks to offer complex and intelligent services, must maintain user privacy and deal with attacks such as spoofing, denial of service (DoS), jamming, and eavesdropping. Attacks change with time, and new ones develop every day. Numerous researchers look into IoT system attack models and evaluate machine, deep, and federated learning-based IoT security approaches. However, existing methods do not produce reliable and encouraging performance. Therefore, this study proposes a novel approach for leveraging federated learning to identify large attacks on IoT devices using the novel CIC_IoT 2023 dataset. The approach uses a federated deep neural network to achieve precise categorization. Before model training, the data was preprocessed using various data preparation techniques to guarantee the creation of a trustworthy dataset for categorization. The suggested approach involves feature normalization, data balancing, and model prediction utilizing federated learning. The experimental findings show that the proposed approach attained an exceptional accuracy of 99.00%, endorsing it for attack detection.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3318866</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8462-5061</orcidid><orcidid>https://orcid.org/0000-0003-2354-4409</orcidid><orcidid>https://orcid.org/0000-0002-8665-1669</orcidid><orcidid>https://orcid.org/0009-0001-0117-4390</orcidid><orcidid>https://orcid.org/0000-0001-5718-5585</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023, Vol.11, p.112189-112198 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2023_3318866 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Artificial neural networks Classification Communications systems Cybersecurity Data models Datasets Deep learning Denial of service attacks Federated learning Internet of Things Internet of Things (IoT) Jamming Machine learning networks attacks preservational deep learning Privacy Production methods Security Servers Spoofing Training |
title | A Novel Federated Edge Learning Approach for Detecting Cyberattacks in IoT Infrastructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A33%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Federated%20Edge%20Learning%20Approach%20for%20Detecting%20Cyberattacks%20in%20IoT%20Infrastructures&rft.jtitle=IEEE%20access&rft.au=Abbas,%20Sidra&rft.date=2023&rft.volume=11&rft.spage=112189&rft.epage=112198&rft.pages=112189-112198&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3318866&rft_dat=%3Cproquest_cross%3E2878509221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878509221&rft_id=info:pmid/&rft_ieee_id=10261980&rft_doaj_id=oai_doaj_org_article_b597fc21da57430c8d5887a43ca9b1ce&rfr_iscdi=true |