A Novel Federated Edge Learning Approach for Detecting Cyberattacks in IoT Infrastructures

The advancement of the communications system has resulted in the rise of the Internet of Things (IoT), which has increased the importance of cybersecurity research. IoT, which incorporates a range of devices into networks to offer complex and intelligent services, must maintain user privacy and deal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023, Vol.11, p.112189-112198
Hauptverfasser: Abbas, Sidra, Hejaili, Abdullah Al, Sampedro, Gabriel Avelino, Abisado, Mideth, Almadhor, Ahmad S., Shahzad, Tariq, Ouahada, Khmaies
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112198
container_issue
container_start_page 112189
container_title IEEE access
container_volume 11
creator Abbas, Sidra
Hejaili, Abdullah Al
Sampedro, Gabriel Avelino
Abisado, Mideth
Almadhor, Ahmad S.
Shahzad, Tariq
Ouahada, Khmaies
description The advancement of the communications system has resulted in the rise of the Internet of Things (IoT), which has increased the importance of cybersecurity research. IoT, which incorporates a range of devices into networks to offer complex and intelligent services, must maintain user privacy and deal with attacks such as spoofing, denial of service (DoS), jamming, and eavesdropping. Attacks change with time, and new ones develop every day. Numerous researchers look into IoT system attack models and evaluate machine, deep, and federated learning-based IoT security approaches. However, existing methods do not produce reliable and encouraging performance. Therefore, this study proposes a novel approach for leveraging federated learning to identify large attacks on IoT devices using the novel CIC_IoT 2023 dataset. The approach uses a federated deep neural network to achieve precise categorization. Before model training, the data was preprocessed using various data preparation techniques to guarantee the creation of a trustworthy dataset for categorization. The suggested approach involves feature normalization, data balancing, and model prediction utilizing federated learning. The experimental findings show that the proposed approach attained an exceptional accuracy of 99.00%, endorsing it for attack detection.
doi_str_mv 10.1109/ACCESS.2023.3318866
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3318866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10261980</ieee_id><doaj_id>oai_doaj_org_article_b597fc21da57430c8d5887a43ca9b1ce</doaj_id><sourcerecordid>2878509221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-3a411580c94d94418697d29ef12055b7a6782efd2af3e609d5c0ba4656515e1e3</originalsourceid><addsrcrecordid>eNpNUctu2zAQFIIGaJDmC9IDgZ7t8CFS5NFQ7caAkR6cXHIhVuTKkeuKLkkXyN9XqozAe9nFYGZ2F1MU94zOGaPmYVHXy-12zikXcyGY1kpdFTecKTMTUqhPF_Pn4i6lPR1KD5CsborXBXkKf_FAVugxQkZPln6HZIMQ-67fkcXxGAO4N9KGSL5jRpdHuH5vRnoG9yuRrifr8EzWfRsh5Xhy-RQxfSmuWzgkvDv32-JltXyuH2ebnz_W9WIzcyU1eSagZExq6kzpTVkyrUzlucGWcSplU4GqNMfWc2gFKmq8dLSBUkklmUSG4rZYT74-wN4eY_cb4rsN0Nn_QIg7CzF37oC2kaZqHWceZFUK6rSXWldQCgemYW70-jZ5DU__OWHKdh9OsR_Ot1xXWlLDORtYYmK5GFKK2H5sZdSOmdgpEztmYs-ZDKqvk6pDxAsFV8xoKv4BgsqGqw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878509221</pqid></control><display><type>article</type><title>A Novel Federated Edge Learning Approach for Detecting Cyberattacks in IoT Infrastructures</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Abbas, Sidra ; Hejaili, Abdullah Al ; Sampedro, Gabriel Avelino ; Abisado, Mideth ; Almadhor, Ahmad S. ; Shahzad, Tariq ; Ouahada, Khmaies</creator><creatorcontrib>Abbas, Sidra ; Hejaili, Abdullah Al ; Sampedro, Gabriel Avelino ; Abisado, Mideth ; Almadhor, Ahmad S. ; Shahzad, Tariq ; Ouahada, Khmaies</creatorcontrib><description>The advancement of the communications system has resulted in the rise of the Internet of Things (IoT), which has increased the importance of cybersecurity research. IoT, which incorporates a range of devices into networks to offer complex and intelligent services, must maintain user privacy and deal with attacks such as spoofing, denial of service (DoS), jamming, and eavesdropping. Attacks change with time, and new ones develop every day. Numerous researchers look into IoT system attack models and evaluate machine, deep, and federated learning-based IoT security approaches. However, existing methods do not produce reliable and encouraging performance. Therefore, this study proposes a novel approach for leveraging federated learning to identify large attacks on IoT devices using the novel CIC_IoT 2023 dataset. The approach uses a federated deep neural network to achieve precise categorization. Before model training, the data was preprocessed using various data preparation techniques to guarantee the creation of a trustworthy dataset for categorization. The suggested approach involves feature normalization, data balancing, and model prediction utilizing federated learning. The experimental findings show that the proposed approach attained an exceptional accuracy of 99.00%, endorsing it for attack detection.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3318866</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Classification ; Communications systems ; Cybersecurity ; Data models ; Datasets ; Deep learning ; Denial of service attacks ; Federated learning ; Internet of Things ; Internet of Things (IoT) ; Jamming ; Machine learning ; networks attacks ; preservational deep learning ; Privacy ; Production methods ; Security ; Servers ; Spoofing ; Training</subject><ispartof>IEEE access, 2023, Vol.11, p.112189-112198</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-3a411580c94d94418697d29ef12055b7a6782efd2af3e609d5c0ba4656515e1e3</citedby><cites>FETCH-LOGICAL-c409t-3a411580c94d94418697d29ef12055b7a6782efd2af3e609d5c0ba4656515e1e3</cites><orcidid>0000-0002-8462-5061 ; 0000-0003-2354-4409 ; 0000-0002-8665-1669 ; 0009-0001-0117-4390 ; 0000-0001-5718-5585</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10261980$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Abbas, Sidra</creatorcontrib><creatorcontrib>Hejaili, Abdullah Al</creatorcontrib><creatorcontrib>Sampedro, Gabriel Avelino</creatorcontrib><creatorcontrib>Abisado, Mideth</creatorcontrib><creatorcontrib>Almadhor, Ahmad S.</creatorcontrib><creatorcontrib>Shahzad, Tariq</creatorcontrib><creatorcontrib>Ouahada, Khmaies</creatorcontrib><title>A Novel Federated Edge Learning Approach for Detecting Cyberattacks in IoT Infrastructures</title><title>IEEE access</title><addtitle>Access</addtitle><description>The advancement of the communications system has resulted in the rise of the Internet of Things (IoT), which has increased the importance of cybersecurity research. IoT, which incorporates a range of devices into networks to offer complex and intelligent services, must maintain user privacy and deal with attacks such as spoofing, denial of service (DoS), jamming, and eavesdropping. Attacks change with time, and new ones develop every day. Numerous researchers look into IoT system attack models and evaluate machine, deep, and federated learning-based IoT security approaches. However, existing methods do not produce reliable and encouraging performance. Therefore, this study proposes a novel approach for leveraging federated learning to identify large attacks on IoT devices using the novel CIC_IoT 2023 dataset. The approach uses a federated deep neural network to achieve precise categorization. Before model training, the data was preprocessed using various data preparation techniques to guarantee the creation of a trustworthy dataset for categorization. The suggested approach involves feature normalization, data balancing, and model prediction utilizing federated learning. The experimental findings show that the proposed approach attained an exceptional accuracy of 99.00%, endorsing it for attack detection.</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Communications systems</subject><subject>Cybersecurity</subject><subject>Data models</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Denial of service attacks</subject><subject>Federated learning</subject><subject>Internet of Things</subject><subject>Internet of Things (IoT)</subject><subject>Jamming</subject><subject>Machine learning</subject><subject>networks attacks</subject><subject>preservational deep learning</subject><subject>Privacy</subject><subject>Production methods</subject><subject>Security</subject><subject>Servers</subject><subject>Spoofing</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctu2zAQFIIGaJDmC9IDgZ7t8CFS5NFQ7caAkR6cXHIhVuTKkeuKLkkXyN9XqozAe9nFYGZ2F1MU94zOGaPmYVHXy-12zikXcyGY1kpdFTecKTMTUqhPF_Pn4i6lPR1KD5CsborXBXkKf_FAVugxQkZPln6HZIMQ-67fkcXxGAO4N9KGSL5jRpdHuH5vRnoG9yuRrifr8EzWfRsh5Xhy-RQxfSmuWzgkvDv32-JltXyuH2ebnz_W9WIzcyU1eSagZExq6kzpTVkyrUzlucGWcSplU4GqNMfWc2gFKmq8dLSBUkklmUSG4rZYT74-wN4eY_cb4rsN0Nn_QIg7CzF37oC2kaZqHWceZFUK6rSXWldQCgemYW70-jZ5DU__OWHKdh9OsR_Ot1xXWlLDORtYYmK5GFKK2H5sZdSOmdgpEztmYs-ZDKqvk6pDxAsFV8xoKv4BgsqGqw</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Abbas, Sidra</creator><creator>Hejaili, Abdullah Al</creator><creator>Sampedro, Gabriel Avelino</creator><creator>Abisado, Mideth</creator><creator>Almadhor, Ahmad S.</creator><creator>Shahzad, Tariq</creator><creator>Ouahada, Khmaies</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8462-5061</orcidid><orcidid>https://orcid.org/0000-0003-2354-4409</orcidid><orcidid>https://orcid.org/0000-0002-8665-1669</orcidid><orcidid>https://orcid.org/0009-0001-0117-4390</orcidid><orcidid>https://orcid.org/0000-0001-5718-5585</orcidid></search><sort><creationdate>2023</creationdate><title>A Novel Federated Edge Learning Approach for Detecting Cyberattacks in IoT Infrastructures</title><author>Abbas, Sidra ; Hejaili, Abdullah Al ; Sampedro, Gabriel Avelino ; Abisado, Mideth ; Almadhor, Ahmad S. ; Shahzad, Tariq ; Ouahada, Khmaies</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-3a411580c94d94418697d29ef12055b7a6782efd2af3e609d5c0ba4656515e1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Communications systems</topic><topic>Cybersecurity</topic><topic>Data models</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Denial of service attacks</topic><topic>Federated learning</topic><topic>Internet of Things</topic><topic>Internet of Things (IoT)</topic><topic>Jamming</topic><topic>Machine learning</topic><topic>networks attacks</topic><topic>preservational deep learning</topic><topic>Privacy</topic><topic>Production methods</topic><topic>Security</topic><topic>Servers</topic><topic>Spoofing</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbas, Sidra</creatorcontrib><creatorcontrib>Hejaili, Abdullah Al</creatorcontrib><creatorcontrib>Sampedro, Gabriel Avelino</creatorcontrib><creatorcontrib>Abisado, Mideth</creatorcontrib><creatorcontrib>Almadhor, Ahmad S.</creatorcontrib><creatorcontrib>Shahzad, Tariq</creatorcontrib><creatorcontrib>Ouahada, Khmaies</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbas, Sidra</au><au>Hejaili, Abdullah Al</au><au>Sampedro, Gabriel Avelino</au><au>Abisado, Mideth</au><au>Almadhor, Ahmad S.</au><au>Shahzad, Tariq</au><au>Ouahada, Khmaies</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Federated Edge Learning Approach for Detecting Cyberattacks in IoT Infrastructures</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>112189</spage><epage>112198</epage><pages>112189-112198</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The advancement of the communications system has resulted in the rise of the Internet of Things (IoT), which has increased the importance of cybersecurity research. IoT, which incorporates a range of devices into networks to offer complex and intelligent services, must maintain user privacy and deal with attacks such as spoofing, denial of service (DoS), jamming, and eavesdropping. Attacks change with time, and new ones develop every day. Numerous researchers look into IoT system attack models and evaluate machine, deep, and federated learning-based IoT security approaches. However, existing methods do not produce reliable and encouraging performance. Therefore, this study proposes a novel approach for leveraging federated learning to identify large attacks on IoT devices using the novel CIC_IoT 2023 dataset. The approach uses a federated deep neural network to achieve precise categorization. Before model training, the data was preprocessed using various data preparation techniques to guarantee the creation of a trustworthy dataset for categorization. The suggested approach involves feature normalization, data balancing, and model prediction utilizing federated learning. The experimental findings show that the proposed approach attained an exceptional accuracy of 99.00%, endorsing it for attack detection.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3318866</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8462-5061</orcidid><orcidid>https://orcid.org/0000-0003-2354-4409</orcidid><orcidid>https://orcid.org/0000-0002-8665-1669</orcidid><orcidid>https://orcid.org/0009-0001-0117-4390</orcidid><orcidid>https://orcid.org/0000-0001-5718-5585</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023, Vol.11, p.112189-112198
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2023_3318866
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Artificial neural networks
Classification
Communications systems
Cybersecurity
Data models
Datasets
Deep learning
Denial of service attacks
Federated learning
Internet of Things
Internet of Things (IoT)
Jamming
Machine learning
networks attacks
preservational deep learning
Privacy
Production methods
Security
Servers
Spoofing
Training
title A Novel Federated Edge Learning Approach for Detecting Cyberattacks in IoT Infrastructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A33%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Federated%20Edge%20Learning%20Approach%20for%20Detecting%20Cyberattacks%20in%20IoT%20Infrastructures&rft.jtitle=IEEE%20access&rft.au=Abbas,%20Sidra&rft.date=2023&rft.volume=11&rft.spage=112189&rft.epage=112198&rft.pages=112189-112198&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3318866&rft_dat=%3Cproquest_cross%3E2878509221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878509221&rft_id=info:pmid/&rft_ieee_id=10261980&rft_doaj_id=oai_doaj_org_article_b597fc21da57430c8d5887a43ca9b1ce&rfr_iscdi=true