Hybrid Attention Mechanism And Forward Feedback Unit for RGB-D Salient Object Detection
RGB-D saliency object detection (SOD) is an important pre-processing operation for various computer vision tasks and has received much attention in recent years. However, how to extract more effective features and how to effectively fuse RGB and depth modality features are still challenges that rest...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Li, Haitang Han, Yibo Li, Peiling Li, Xiaohui Shi, Lijuan |
description | RGB-D saliency object detection (SOD) is an important pre-processing operation for various computer vision tasks and has received much attention in recent years. However, how to extract more effective features and how to effectively fuse RGB and depth modality features are still challenges that restrict the development of SOD. In this paper, we propose an effective network architecture called FFMA-Net: 1) We replace the backbone network of the baseline with a ResNet34 model to extract more effective features from the input data; 2) We design the HAM module to refine the features extracted by the ResNet34 model at different stages to ensure the effectiveness of features from each stage; 3) We propose the FFU module to perform multi-scale fusion of features from different stages, resulting in more semantic-rich features that are crucial for the decoding stage of the model. Finally, our model performs better than the latest methods on six RGB-D datasets on all evaluation metrics, especially in terms of F-measure metric, which shows significant improvement with approximately 5% on both SSD and LFSD datasets. |
doi_str_mv | 10.1109/ACCESS.2023.3309636 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3309636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10233844</ieee_id><doaj_id>oai_doaj_org_article_3635b675ed454d7ab6d1b3f8d39f99a0</doaj_id><sourcerecordid>2864343724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-c1817e67a12f82c000d099fbe54eb0b6d5f839755b937f7bd9ef84954987381e3</originalsourceid><addsrcrecordid>eNpNkctqHDEQRRuTQIzjL0gWgqx7InXpuZyMn-BgyMRkKaRWydFk3HLUMsF_b9ltgmtzi6LuqYLbdZ8YXTFGzdf1ZnO63a4GOsAKgBoJ8qA7HJg0PQiQ7970H7rjed7RVrqNhDrsfl08-pICWdeKU015It9x_O2mNN-R9RTIWS7_XGmKGLwb_5CbKVUScyE_zr_1J2Tr9qkZybXf4VjJCdYmDfOxex_dfsbjVz3qbs5Of24u-qvr88vN-qofQZjaj0wzhVI5NkQ9jO2xQI2JHgVHT70MImowSghvQEXlg8GouRHcaAWaIRx1lws3ZLez9yXdufJos0v2ZZDLrXWlpnGPFiQIL5XAwAUPyjU68xB1ABONcbSxviys-5L_PuBc7S4_lKm9bwctOXBQA29bsGyNJc9zwfj_KqP2ORC7BGKfA7GvgTTX58WVEPGNYwDQnMMT6syEzg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864343724</pqid></control><display><type>article</type><title>Hybrid Attention Mechanism And Forward Feedback Unit for RGB-D Salient Object Detection</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Haitang ; Han, Yibo ; Li, Peiling ; Li, Xiaohui ; Shi, Lijuan</creator><creatorcontrib>Li, Haitang ; Han, Yibo ; Li, Peiling ; Li, Xiaohui ; Shi, Lijuan</creatorcontrib><description>RGB-D saliency object detection (SOD) is an important pre-processing operation for various computer vision tasks and has received much attention in recent years. However, how to extract more effective features and how to effectively fuse RGB and depth modality features are still challenges that restrict the development of SOD. In this paper, we propose an effective network architecture called FFMA-Net: 1) We replace the backbone network of the baseline with a ResNet34 model to extract more effective features from the input data; 2) We design the HAM module to refine the features extracted by the ResNet34 model at different stages to ensure the effectiveness of features from each stage; 3) We propose the FFU module to perform multi-scale fusion of features from different stages, resulting in more semantic-rich features that are crucial for the decoding stage of the model. Finally, our model performs better than the latest methods on six RGB-D datasets on all evaluation metrics, especially in terms of F-measure metric, which shows significant improvement with approximately 5% on both SSD and LFSD datasets.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3309636</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computer architecture ; Computer networks ; Computer vision ; Data mining ; Datasets ; Decoding ; Encoding ; Feature extraction ; Feedforward neural networks ; Forward Feedback Unit ; Hybrid Attention Mechanism ; Modules ; Object detection ; Object recognition ; RGB-D salient object detection ; Salience ; Task analysis ; Visualization</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-c1817e67a12f82c000d099fbe54eb0b6d5f839755b937f7bd9ef84954987381e3</cites><orcidid>0009-0004-1785-7665</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10233844$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,27612,27903,27904,54912</link.rule.ids></links><search><creatorcontrib>Li, Haitang</creatorcontrib><creatorcontrib>Han, Yibo</creatorcontrib><creatorcontrib>Li, Peiling</creatorcontrib><creatorcontrib>Li, Xiaohui</creatorcontrib><creatorcontrib>Shi, Lijuan</creatorcontrib><title>Hybrid Attention Mechanism And Forward Feedback Unit for RGB-D Salient Object Detection</title><title>IEEE access</title><addtitle>Access</addtitle><description>RGB-D saliency object detection (SOD) is an important pre-processing operation for various computer vision tasks and has received much attention in recent years. However, how to extract more effective features and how to effectively fuse RGB and depth modality features are still challenges that restrict the development of SOD. In this paper, we propose an effective network architecture called FFMA-Net: 1) We replace the backbone network of the baseline with a ResNet34 model to extract more effective features from the input data; 2) We design the HAM module to refine the features extracted by the ResNet34 model at different stages to ensure the effectiveness of features from each stage; 3) We propose the FFU module to perform multi-scale fusion of features from different stages, resulting in more semantic-rich features that are crucial for the decoding stage of the model. Finally, our model performs better than the latest methods on six RGB-D datasets on all evaluation metrics, especially in terms of F-measure metric, which shows significant improvement with approximately 5% on both SSD and LFSD datasets.</description><subject>Computer architecture</subject><subject>Computer networks</subject><subject>Computer vision</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Decoding</subject><subject>Encoding</subject><subject>Feature extraction</subject><subject>Feedforward neural networks</subject><subject>Forward Feedback Unit</subject><subject>Hybrid Attention Mechanism</subject><subject>Modules</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>RGB-D salient object detection</subject><subject>Salience</subject><subject>Task analysis</subject><subject>Visualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkctqHDEQRRuTQIzjL0gWgqx7InXpuZyMn-BgyMRkKaRWydFk3HLUMsF_b9ltgmtzi6LuqYLbdZ8YXTFGzdf1ZnO63a4GOsAKgBoJ8qA7HJg0PQiQ7970H7rjed7RVrqNhDrsfl08-pICWdeKU015It9x_O2mNN-R9RTIWS7_XGmKGLwb_5CbKVUScyE_zr_1J2Tr9qkZybXf4VjJCdYmDfOxex_dfsbjVz3qbs5Of24u-qvr88vN-qofQZjaj0wzhVI5NkQ9jO2xQI2JHgVHT70MImowSghvQEXlg8GouRHcaAWaIRx1lws3ZLez9yXdufJos0v2ZZDLrXWlpnGPFiQIL5XAwAUPyjU68xB1ABONcbSxviys-5L_PuBc7S4_lKm9bwctOXBQA29bsGyNJc9zwfj_KqP2ORC7BGKfA7GvgTTX58WVEPGNYwDQnMMT6syEzg</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Li, Haitang</creator><creator>Han, Yibo</creator><creator>Li, Peiling</creator><creator>Li, Xiaohui</creator><creator>Shi, Lijuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0004-1785-7665</orcidid></search><sort><creationdate>20230101</creationdate><title>Hybrid Attention Mechanism And Forward Feedback Unit for RGB-D Salient Object Detection</title><author>Li, Haitang ; Han, Yibo ; Li, Peiling ; Li, Xiaohui ; Shi, Lijuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-c1817e67a12f82c000d099fbe54eb0b6d5f839755b937f7bd9ef84954987381e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer architecture</topic><topic>Computer networks</topic><topic>Computer vision</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Decoding</topic><topic>Encoding</topic><topic>Feature extraction</topic><topic>Feedforward neural networks</topic><topic>Forward Feedback Unit</topic><topic>Hybrid Attention Mechanism</topic><topic>Modules</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>RGB-D salient object detection</topic><topic>Salience</topic><topic>Task analysis</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Haitang</creatorcontrib><creatorcontrib>Han, Yibo</creatorcontrib><creatorcontrib>Li, Peiling</creatorcontrib><creatorcontrib>Li, Xiaohui</creatorcontrib><creatorcontrib>Shi, Lijuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Haitang</au><au>Han, Yibo</au><au>Li, Peiling</au><au>Li, Xiaohui</au><au>Shi, Lijuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Attention Mechanism And Forward Feedback Unit for RGB-D Salient Object Detection</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>RGB-D saliency object detection (SOD) is an important pre-processing operation for various computer vision tasks and has received much attention in recent years. However, how to extract more effective features and how to effectively fuse RGB and depth modality features are still challenges that restrict the development of SOD. In this paper, we propose an effective network architecture called FFMA-Net: 1) We replace the backbone network of the baseline with a ResNet34 model to extract more effective features from the input data; 2) We design the HAM module to refine the features extracted by the ResNet34 model at different stages to ensure the effectiveness of features from each stage; 3) We propose the FFU module to perform multi-scale fusion of features from different stages, resulting in more semantic-rich features that are crucial for the decoding stage of the model. Finally, our model performs better than the latest methods on six RGB-D datasets on all evaluation metrics, especially in terms of F-measure metric, which shows significant improvement with approximately 5% on both SSD and LFSD datasets.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3309636</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0004-1785-7665</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2023_3309636 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Computer architecture Computer networks Computer vision Data mining Datasets Decoding Encoding Feature extraction Feedforward neural networks Forward Feedback Unit Hybrid Attention Mechanism Modules Object detection Object recognition RGB-D salient object detection Salience Task analysis Visualization |
title | Hybrid Attention Mechanism And Forward Feedback Unit for RGB-D Salient Object Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Attention%20Mechanism%20And%20Forward%20Feedback%20Unit%20for%20RGB-D%20Salient%20Object%20Detection&rft.jtitle=IEEE%20access&rft.au=Li,%20Haitang&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3309636&rft_dat=%3Cproquest_cross%3E2864343724%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864343724&rft_id=info:pmid/&rft_ieee_id=10233844&rft_doaj_id=oai_doaj_org_article_3635b675ed454d7ab6d1b3f8d39f99a0&rfr_iscdi=true |