Optimization of PI-Cascaded Controller's Parameters for Linear Servo Mechanism: A Comparative Study of Multiple Algorithms
In numerous industries, especially in automation and industrial processes, the linear servo mechanism is used. However, the parameters of the friction and backlash models are frequently unknown for servomechanism systems, resulting in system uncertainty. High steady-state inaccuracy is caused by fri...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023, Vol.11, p.86377-86396 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 86396 |
---|---|
container_issue | |
container_start_page | 86377 |
container_title | IEEE access |
container_volume | 11 |
creator | Abdelbar, M. Ramadan, Huda Khalil, Abdelrahman Farag, Hamad Bahgat, Mazen Rabie, Omar El-Shaer, Yasser |
description | In numerous industries, especially in automation and industrial processes, the linear servo mechanism is used. However, the parameters of the friction and backlash models are frequently unknown for servomechanism systems, resulting in system uncertainty. High steady-state inaccuracy is caused by friction, whereas undesired vibration is caused by blowback. In servomechanism systems, friction is an issue that is still not sufficiently addressed by a realistic model. To address these challenges, this research on the linear servo system is controlled by a proportional-integral (PI-Cascaded) controller, which enables systems to respond more rapidly, reduce or reject disturbance, and arrive at a steady state more quickly. Moreover, the controller's parameters are crucial to getting the best performance from a particular controller. As a result, the controller settings were adjusted using four different meta-heuristic optimization algorithms: Surrogate Based Optimization (SBO), Hybrid Genetic Pattern Search Algorithm (HGSPA), Particle Swarm Optimization (PSO), and Simulated Annealing (SA) with four objective functions: Integral Square Error (ISE), Integral Absolute Error (IAE), Integral Time Square Error (ITSE), and Integral Time Absolute Error (ITAE). Throughout the system's experimental testing, 50 cm was employed as the reference input. Negligible overshoot, quick rise and settling times, and excellent responsiveness are all characteristics of the PSO algorithm with ITSE objective function. Moreover, to assess the system's robustness. A 50 N force was applied to the system, and a sine wave signal is input into the system. The system shows remarkable stability and resilience throughout the 50 N load experimentation test. |
doi_str_mv | 10.1109/ACCESS.2023.3304333 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3304333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10214555</ieee_id><doaj_id>oai_doaj_org_article_b543da0c92724836a0de8a6d7bbb3bda</doaj_id><sourcerecordid>2853025577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-1ba8e6785c4474de77c987fe75ebc4eb4730ce4b9d64ca720994cede0b3e1bdc3</originalsourceid><addsrcrecordid>eNpNkU9r3DAQxU1poSHNJ2gPgh568lbWH8vubTFpu7AhgW3PYiSNEy225UraQPLp661DyVxmGN7vzcArio8V3VQVbb9uu-76cNgwyviGcyo452-KC1bVbcklr9--mt8XVykd6VLNspLqoni-nbMf_TNkHyYSenK3KztIFhw60oUpxzAMGL8kcgcRRswYE-lDJHs_IURywPgYyA3aB5h8Gr-R7UKN86LN_hHJIZ_c09n25jRkPw9ItsN9iD4_jOlD8a6HIeHVS78sfn-__tX9LPe3P3bddl9aLttcVgYarFUjrRBKOFTKto3qUUk0VqARilOLwrSuFhYUo20rLDqkhmNlnOWXxW71dQGOeo5-hPikA3j9bxHivYaYvR1QGym4A2pbpphoeA3UYQO1U8YYbhwsXp9XrzmGPydMWR_DKU7L-5o1klMmpVKLiq8qG0NKEfv_Vyuqz5npNTN9zky_ZLZQn1bKI-IrglVCSsn_AhUjlJE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2853025577</pqid></control><display><type>article</type><title>Optimization of PI-Cascaded Controller's Parameters for Linear Servo Mechanism: A Comparative Study of Multiple Algorithms</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Abdelbar, M. ; Ramadan, Huda ; Khalil, Abdelrahman ; Farag, Hamad ; Bahgat, Mazen ; Rabie, Omar ; El-Shaer, Yasser</creator><creatorcontrib>Abdelbar, M. ; Ramadan, Huda ; Khalil, Abdelrahman ; Farag, Hamad ; Bahgat, Mazen ; Rabie, Omar ; El-Shaer, Yasser</creatorcontrib><description>In numerous industries, especially in automation and industrial processes, the linear servo mechanism is used. However, the parameters of the friction and backlash models are frequently unknown for servomechanism systems, resulting in system uncertainty. High steady-state inaccuracy is caused by friction, whereas undesired vibration is caused by blowback. In servomechanism systems, friction is an issue that is still not sufficiently addressed by a realistic model. To address these challenges, this research on the linear servo system is controlled by a proportional-integral (PI-Cascaded) controller, which enables systems to respond more rapidly, reduce or reject disturbance, and arrive at a steady state more quickly. Moreover, the controller's parameters are crucial to getting the best performance from a particular controller. As a result, the controller settings were adjusted using four different meta-heuristic optimization algorithms: Surrogate Based Optimization (SBO), Hybrid Genetic Pattern Search Algorithm (HGSPA), Particle Swarm Optimization (PSO), and Simulated Annealing (SA) with four objective functions: Integral Square Error (ISE), Integral Absolute Error (IAE), Integral Time Square Error (ITSE), and Integral Time Absolute Error (ITAE). Throughout the system's experimental testing, 50 cm was employed as the reference input. Negligible overshoot, quick rise and settling times, and excellent responsiveness are all characteristics of the PSO algorithm with ITSE objective function. Moreover, to assess the system's robustness. A 50 N force was applied to the system, and a sine wave signal is input into the system. The system shows remarkable stability and resilience throughout the 50 N load experimentation test.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3304333</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuators ; Algorithms ; Cascaded controller ; Comparative studies ; Control systems ; Controllers ; DC motors ; Errors ; Friction ; genetic algorithm (GA) ; Heuristic methods ; linear servo mechanism ; Mathematical models ; Optimization ; Parameters ; Particle swarm optimization ; particle swarm optimization (PSO) ; Pattern search ; Proportional integral ; Search algorithms ; Servocontrol ; Servomechanisms ; Simulated annealing ; simulated annealing (SA) ; Sine waves ; Steady state ; surrogate based optimization (SBO) ; Tuning</subject><ispartof>IEEE access, 2023, Vol.11, p.86377-86396</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-1ba8e6785c4474de77c987fe75ebc4eb4730ce4b9d64ca720994cede0b3e1bdc3</cites><orcidid>0000-0001-7486-0212</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10214555$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27638,27928,27929,27930,54938</link.rule.ids></links><search><creatorcontrib>Abdelbar, M.</creatorcontrib><creatorcontrib>Ramadan, Huda</creatorcontrib><creatorcontrib>Khalil, Abdelrahman</creatorcontrib><creatorcontrib>Farag, Hamad</creatorcontrib><creatorcontrib>Bahgat, Mazen</creatorcontrib><creatorcontrib>Rabie, Omar</creatorcontrib><creatorcontrib>El-Shaer, Yasser</creatorcontrib><title>Optimization of PI-Cascaded Controller's Parameters for Linear Servo Mechanism: A Comparative Study of Multiple Algorithms</title><title>IEEE access</title><addtitle>Access</addtitle><description>In numerous industries, especially in automation and industrial processes, the linear servo mechanism is used. However, the parameters of the friction and backlash models are frequently unknown for servomechanism systems, resulting in system uncertainty. High steady-state inaccuracy is caused by friction, whereas undesired vibration is caused by blowback. In servomechanism systems, friction is an issue that is still not sufficiently addressed by a realistic model. To address these challenges, this research on the linear servo system is controlled by a proportional-integral (PI-Cascaded) controller, which enables systems to respond more rapidly, reduce or reject disturbance, and arrive at a steady state more quickly. Moreover, the controller's parameters are crucial to getting the best performance from a particular controller. As a result, the controller settings were adjusted using four different meta-heuristic optimization algorithms: Surrogate Based Optimization (SBO), Hybrid Genetic Pattern Search Algorithm (HGSPA), Particle Swarm Optimization (PSO), and Simulated Annealing (SA) with four objective functions: Integral Square Error (ISE), Integral Absolute Error (IAE), Integral Time Square Error (ITSE), and Integral Time Absolute Error (ITAE). Throughout the system's experimental testing, 50 cm was employed as the reference input. Negligible overshoot, quick rise and settling times, and excellent responsiveness are all characteristics of the PSO algorithm with ITSE objective function. Moreover, to assess the system's robustness. A 50 N force was applied to the system, and a sine wave signal is input into the system. The system shows remarkable stability and resilience throughout the 50 N load experimentation test.</description><subject>Actuators</subject><subject>Algorithms</subject><subject>Cascaded controller</subject><subject>Comparative studies</subject><subject>Control systems</subject><subject>Controllers</subject><subject>DC motors</subject><subject>Errors</subject><subject>Friction</subject><subject>genetic algorithm (GA)</subject><subject>Heuristic methods</subject><subject>linear servo mechanism</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Particle swarm optimization</subject><subject>particle swarm optimization (PSO)</subject><subject>Pattern search</subject><subject>Proportional integral</subject><subject>Search algorithms</subject><subject>Servocontrol</subject><subject>Servomechanisms</subject><subject>Simulated annealing</subject><subject>simulated annealing (SA)</subject><subject>Sine waves</subject><subject>Steady state</subject><subject>surrogate based optimization (SBO)</subject><subject>Tuning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9r3DAQxU1poSHNJ2gPgh568lbWH8vubTFpu7AhgW3PYiSNEy225UraQPLp661DyVxmGN7vzcArio8V3VQVbb9uu-76cNgwyviGcyo452-KC1bVbcklr9--mt8XVykd6VLNspLqoni-nbMf_TNkHyYSenK3KztIFhw60oUpxzAMGL8kcgcRRswYE-lDJHs_IURywPgYyA3aB5h8Gr-R7UKN86LN_hHJIZ_c09n25jRkPw9ItsN9iD4_jOlD8a6HIeHVS78sfn-__tX9LPe3P3bddl9aLttcVgYarFUjrRBKOFTKto3qUUk0VqARilOLwrSuFhYUo20rLDqkhmNlnOWXxW71dQGOeo5-hPikA3j9bxHivYaYvR1QGym4A2pbpphoeA3UYQO1U8YYbhwsXp9XrzmGPydMWR_DKU7L-5o1klMmpVKLiq8qG0NKEfv_Vyuqz5npNTN9zky_ZLZQn1bKI-IrglVCSsn_AhUjlJE</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Abdelbar, M.</creator><creator>Ramadan, Huda</creator><creator>Khalil, Abdelrahman</creator><creator>Farag, Hamad</creator><creator>Bahgat, Mazen</creator><creator>Rabie, Omar</creator><creator>El-Shaer, Yasser</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7486-0212</orcidid></search><sort><creationdate>2023</creationdate><title>Optimization of PI-Cascaded Controller's Parameters for Linear Servo Mechanism: A Comparative Study of Multiple Algorithms</title><author>Abdelbar, M. ; Ramadan, Huda ; Khalil, Abdelrahman ; Farag, Hamad ; Bahgat, Mazen ; Rabie, Omar ; El-Shaer, Yasser</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-1ba8e6785c4474de77c987fe75ebc4eb4730ce4b9d64ca720994cede0b3e1bdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuators</topic><topic>Algorithms</topic><topic>Cascaded controller</topic><topic>Comparative studies</topic><topic>Control systems</topic><topic>Controllers</topic><topic>DC motors</topic><topic>Errors</topic><topic>Friction</topic><topic>genetic algorithm (GA)</topic><topic>Heuristic methods</topic><topic>linear servo mechanism</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Particle swarm optimization</topic><topic>particle swarm optimization (PSO)</topic><topic>Pattern search</topic><topic>Proportional integral</topic><topic>Search algorithms</topic><topic>Servocontrol</topic><topic>Servomechanisms</topic><topic>Simulated annealing</topic><topic>simulated annealing (SA)</topic><topic>Sine waves</topic><topic>Steady state</topic><topic>surrogate based optimization (SBO)</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdelbar, M.</creatorcontrib><creatorcontrib>Ramadan, Huda</creatorcontrib><creatorcontrib>Khalil, Abdelrahman</creatorcontrib><creatorcontrib>Farag, Hamad</creatorcontrib><creatorcontrib>Bahgat, Mazen</creatorcontrib><creatorcontrib>Rabie, Omar</creatorcontrib><creatorcontrib>El-Shaer, Yasser</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdelbar, M.</au><au>Ramadan, Huda</au><au>Khalil, Abdelrahman</au><au>Farag, Hamad</au><au>Bahgat, Mazen</au><au>Rabie, Omar</au><au>El-Shaer, Yasser</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of PI-Cascaded Controller's Parameters for Linear Servo Mechanism: A Comparative Study of Multiple Algorithms</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>86377</spage><epage>86396</epage><pages>86377-86396</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In numerous industries, especially in automation and industrial processes, the linear servo mechanism is used. However, the parameters of the friction and backlash models are frequently unknown for servomechanism systems, resulting in system uncertainty. High steady-state inaccuracy is caused by friction, whereas undesired vibration is caused by blowback. In servomechanism systems, friction is an issue that is still not sufficiently addressed by a realistic model. To address these challenges, this research on the linear servo system is controlled by a proportional-integral (PI-Cascaded) controller, which enables systems to respond more rapidly, reduce or reject disturbance, and arrive at a steady state more quickly. Moreover, the controller's parameters are crucial to getting the best performance from a particular controller. As a result, the controller settings were adjusted using four different meta-heuristic optimization algorithms: Surrogate Based Optimization (SBO), Hybrid Genetic Pattern Search Algorithm (HGSPA), Particle Swarm Optimization (PSO), and Simulated Annealing (SA) with four objective functions: Integral Square Error (ISE), Integral Absolute Error (IAE), Integral Time Square Error (ITSE), and Integral Time Absolute Error (ITAE). Throughout the system's experimental testing, 50 cm was employed as the reference input. Negligible overshoot, quick rise and settling times, and excellent responsiveness are all characteristics of the PSO algorithm with ITSE objective function. Moreover, to assess the system's robustness. A 50 N force was applied to the system, and a sine wave signal is input into the system. The system shows remarkable stability and resilience throughout the 50 N load experimentation test.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3304333</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-7486-0212</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023, Vol.11, p.86377-86396 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2023_3304333 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Actuators Algorithms Cascaded controller Comparative studies Control systems Controllers DC motors Errors Friction genetic algorithm (GA) Heuristic methods linear servo mechanism Mathematical models Optimization Parameters Particle swarm optimization particle swarm optimization (PSO) Pattern search Proportional integral Search algorithms Servocontrol Servomechanisms Simulated annealing simulated annealing (SA) Sine waves Steady state surrogate based optimization (SBO) Tuning |
title | Optimization of PI-Cascaded Controller's Parameters for Linear Servo Mechanism: A Comparative Study of Multiple Algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T02%3A59%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20PI-Cascaded%20Controller's%20Parameters%20for%20Linear%20Servo%20Mechanism:%20A%20Comparative%20Study%20of%20Multiple%20Algorithms&rft.jtitle=IEEE%20access&rft.au=Abdelbar,%20M.&rft.date=2023&rft.volume=11&rft.spage=86377&rft.epage=86396&rft.pages=86377-86396&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3304333&rft_dat=%3Cproquest_cross%3E2853025577%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2853025577&rft_id=info:pmid/&rft_ieee_id=10214555&rft_doaj_id=oai_doaj_org_article_b543da0c92724836a0de8a6d7bbb3bda&rfr_iscdi=true |