Optimization of PI-Cascaded Controller's Parameters for Linear Servo Mechanism: A Comparative Study of Multiple Algorithms

In numerous industries, especially in automation and industrial processes, the linear servo mechanism is used. However, the parameters of the friction and backlash models are frequently unknown for servomechanism systems, resulting in system uncertainty. High steady-state inaccuracy is caused by fri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023, Vol.11, p.86377-86396
Hauptverfasser: Abdelbar, M., Ramadan, Huda, Khalil, Abdelrahman, Farag, Hamad, Bahgat, Mazen, Rabie, Omar, El-Shaer, Yasser
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 86396
container_issue
container_start_page 86377
container_title IEEE access
container_volume 11
creator Abdelbar, M.
Ramadan, Huda
Khalil, Abdelrahman
Farag, Hamad
Bahgat, Mazen
Rabie, Omar
El-Shaer, Yasser
description In numerous industries, especially in automation and industrial processes, the linear servo mechanism is used. However, the parameters of the friction and backlash models are frequently unknown for servomechanism systems, resulting in system uncertainty. High steady-state inaccuracy is caused by friction, whereas undesired vibration is caused by blowback. In servomechanism systems, friction is an issue that is still not sufficiently addressed by a realistic model. To address these challenges, this research on the linear servo system is controlled by a proportional-integral (PI-Cascaded) controller, which enables systems to respond more rapidly, reduce or reject disturbance, and arrive at a steady state more quickly. Moreover, the controller's parameters are crucial to getting the best performance from a particular controller. As a result, the controller settings were adjusted using four different meta-heuristic optimization algorithms: Surrogate Based Optimization (SBO), Hybrid Genetic Pattern Search Algorithm (HGSPA), Particle Swarm Optimization (PSO), and Simulated Annealing (SA) with four objective functions: Integral Square Error (ISE), Integral Absolute Error (IAE), Integral Time Square Error (ITSE), and Integral Time Absolute Error (ITAE). Throughout the system's experimental testing, 50 cm was employed as the reference input. Negligible overshoot, quick rise and settling times, and excellent responsiveness are all characteristics of the PSO algorithm with ITSE objective function. Moreover, to assess the system's robustness. A 50 N force was applied to the system, and a sine wave signal is input into the system. The system shows remarkable stability and resilience throughout the 50 N load experimentation test.
doi_str_mv 10.1109/ACCESS.2023.3304333
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3304333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10214555</ieee_id><doaj_id>oai_doaj_org_article_b543da0c92724836a0de8a6d7bbb3bda</doaj_id><sourcerecordid>2853025577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-1ba8e6785c4474de77c987fe75ebc4eb4730ce4b9d64ca720994cede0b3e1bdc3</originalsourceid><addsrcrecordid>eNpNkU9r3DAQxU1poSHNJ2gPgh568lbWH8vubTFpu7AhgW3PYiSNEy225UraQPLp661DyVxmGN7vzcArio8V3VQVbb9uu-76cNgwyviGcyo452-KC1bVbcklr9--mt8XVykd6VLNspLqoni-nbMf_TNkHyYSenK3KztIFhw60oUpxzAMGL8kcgcRRswYE-lDJHs_IURywPgYyA3aB5h8Gr-R7UKN86LN_hHJIZ_c09n25jRkPw9ItsN9iD4_jOlD8a6HIeHVS78sfn-__tX9LPe3P3bddl9aLttcVgYarFUjrRBKOFTKto3qUUk0VqARilOLwrSuFhYUo20rLDqkhmNlnOWXxW71dQGOeo5-hPikA3j9bxHivYaYvR1QGym4A2pbpphoeA3UYQO1U8YYbhwsXp9XrzmGPydMWR_DKU7L-5o1klMmpVKLiq8qG0NKEfv_Vyuqz5npNTN9zky_ZLZQn1bKI-IrglVCSsn_AhUjlJE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2853025577</pqid></control><display><type>article</type><title>Optimization of PI-Cascaded Controller's Parameters for Linear Servo Mechanism: A Comparative Study of Multiple Algorithms</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Abdelbar, M. ; Ramadan, Huda ; Khalil, Abdelrahman ; Farag, Hamad ; Bahgat, Mazen ; Rabie, Omar ; El-Shaer, Yasser</creator><creatorcontrib>Abdelbar, M. ; Ramadan, Huda ; Khalil, Abdelrahman ; Farag, Hamad ; Bahgat, Mazen ; Rabie, Omar ; El-Shaer, Yasser</creatorcontrib><description>In numerous industries, especially in automation and industrial processes, the linear servo mechanism is used. However, the parameters of the friction and backlash models are frequently unknown for servomechanism systems, resulting in system uncertainty. High steady-state inaccuracy is caused by friction, whereas undesired vibration is caused by blowback. In servomechanism systems, friction is an issue that is still not sufficiently addressed by a realistic model. To address these challenges, this research on the linear servo system is controlled by a proportional-integral (PI-Cascaded) controller, which enables systems to respond more rapidly, reduce or reject disturbance, and arrive at a steady state more quickly. Moreover, the controller's parameters are crucial to getting the best performance from a particular controller. As a result, the controller settings were adjusted using four different meta-heuristic optimization algorithms: Surrogate Based Optimization (SBO), Hybrid Genetic Pattern Search Algorithm (HGSPA), Particle Swarm Optimization (PSO), and Simulated Annealing (SA) with four objective functions: Integral Square Error (ISE), Integral Absolute Error (IAE), Integral Time Square Error (ITSE), and Integral Time Absolute Error (ITAE). Throughout the system's experimental testing, 50 cm was employed as the reference input. Negligible overshoot, quick rise and settling times, and excellent responsiveness are all characteristics of the PSO algorithm with ITSE objective function. Moreover, to assess the system's robustness. A 50 N force was applied to the system, and a sine wave signal is input into the system. The system shows remarkable stability and resilience throughout the 50 N load experimentation test.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3304333</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuators ; Algorithms ; Cascaded controller ; Comparative studies ; Control systems ; Controllers ; DC motors ; Errors ; Friction ; genetic algorithm (GA) ; Heuristic methods ; linear servo mechanism ; Mathematical models ; Optimization ; Parameters ; Particle swarm optimization ; particle swarm optimization (PSO) ; Pattern search ; Proportional integral ; Search algorithms ; Servocontrol ; Servomechanisms ; Simulated annealing ; simulated annealing (SA) ; Sine waves ; Steady state ; surrogate based optimization (SBO) ; Tuning</subject><ispartof>IEEE access, 2023, Vol.11, p.86377-86396</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-1ba8e6785c4474de77c987fe75ebc4eb4730ce4b9d64ca720994cede0b3e1bdc3</cites><orcidid>0000-0001-7486-0212</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10214555$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27638,27928,27929,27930,54938</link.rule.ids></links><search><creatorcontrib>Abdelbar, M.</creatorcontrib><creatorcontrib>Ramadan, Huda</creatorcontrib><creatorcontrib>Khalil, Abdelrahman</creatorcontrib><creatorcontrib>Farag, Hamad</creatorcontrib><creatorcontrib>Bahgat, Mazen</creatorcontrib><creatorcontrib>Rabie, Omar</creatorcontrib><creatorcontrib>El-Shaer, Yasser</creatorcontrib><title>Optimization of PI-Cascaded Controller's Parameters for Linear Servo Mechanism: A Comparative Study of Multiple Algorithms</title><title>IEEE access</title><addtitle>Access</addtitle><description>In numerous industries, especially in automation and industrial processes, the linear servo mechanism is used. However, the parameters of the friction and backlash models are frequently unknown for servomechanism systems, resulting in system uncertainty. High steady-state inaccuracy is caused by friction, whereas undesired vibration is caused by blowback. In servomechanism systems, friction is an issue that is still not sufficiently addressed by a realistic model. To address these challenges, this research on the linear servo system is controlled by a proportional-integral (PI-Cascaded) controller, which enables systems to respond more rapidly, reduce or reject disturbance, and arrive at a steady state more quickly. Moreover, the controller's parameters are crucial to getting the best performance from a particular controller. As a result, the controller settings were adjusted using four different meta-heuristic optimization algorithms: Surrogate Based Optimization (SBO), Hybrid Genetic Pattern Search Algorithm (HGSPA), Particle Swarm Optimization (PSO), and Simulated Annealing (SA) with four objective functions: Integral Square Error (ISE), Integral Absolute Error (IAE), Integral Time Square Error (ITSE), and Integral Time Absolute Error (ITAE). Throughout the system's experimental testing, 50 cm was employed as the reference input. Negligible overshoot, quick rise and settling times, and excellent responsiveness are all characteristics of the PSO algorithm with ITSE objective function. Moreover, to assess the system's robustness. A 50 N force was applied to the system, and a sine wave signal is input into the system. The system shows remarkable stability and resilience throughout the 50 N load experimentation test.</description><subject>Actuators</subject><subject>Algorithms</subject><subject>Cascaded controller</subject><subject>Comparative studies</subject><subject>Control systems</subject><subject>Controllers</subject><subject>DC motors</subject><subject>Errors</subject><subject>Friction</subject><subject>genetic algorithm (GA)</subject><subject>Heuristic methods</subject><subject>linear servo mechanism</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Particle swarm optimization</subject><subject>particle swarm optimization (PSO)</subject><subject>Pattern search</subject><subject>Proportional integral</subject><subject>Search algorithms</subject><subject>Servocontrol</subject><subject>Servomechanisms</subject><subject>Simulated annealing</subject><subject>simulated annealing (SA)</subject><subject>Sine waves</subject><subject>Steady state</subject><subject>surrogate based optimization (SBO)</subject><subject>Tuning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9r3DAQxU1poSHNJ2gPgh568lbWH8vubTFpu7AhgW3PYiSNEy225UraQPLp661DyVxmGN7vzcArio8V3VQVbb9uu-76cNgwyviGcyo452-KC1bVbcklr9--mt8XVykd6VLNspLqoni-nbMf_TNkHyYSenK3KztIFhw60oUpxzAMGL8kcgcRRswYE-lDJHs_IURywPgYyA3aB5h8Gr-R7UKN86LN_hHJIZ_c09n25jRkPw9ItsN9iD4_jOlD8a6HIeHVS78sfn-__tX9LPe3P3bddl9aLttcVgYarFUjrRBKOFTKto3qUUk0VqARilOLwrSuFhYUo20rLDqkhmNlnOWXxW71dQGOeo5-hPikA3j9bxHivYaYvR1QGym4A2pbpphoeA3UYQO1U8YYbhwsXp9XrzmGPydMWR_DKU7L-5o1klMmpVKLiq8qG0NKEfv_Vyuqz5npNTN9zky_ZLZQn1bKI-IrglVCSsn_AhUjlJE</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Abdelbar, M.</creator><creator>Ramadan, Huda</creator><creator>Khalil, Abdelrahman</creator><creator>Farag, Hamad</creator><creator>Bahgat, Mazen</creator><creator>Rabie, Omar</creator><creator>El-Shaer, Yasser</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7486-0212</orcidid></search><sort><creationdate>2023</creationdate><title>Optimization of PI-Cascaded Controller's Parameters for Linear Servo Mechanism: A Comparative Study of Multiple Algorithms</title><author>Abdelbar, M. ; Ramadan, Huda ; Khalil, Abdelrahman ; Farag, Hamad ; Bahgat, Mazen ; Rabie, Omar ; El-Shaer, Yasser</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-1ba8e6785c4474de77c987fe75ebc4eb4730ce4b9d64ca720994cede0b3e1bdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuators</topic><topic>Algorithms</topic><topic>Cascaded controller</topic><topic>Comparative studies</topic><topic>Control systems</topic><topic>Controllers</topic><topic>DC motors</topic><topic>Errors</topic><topic>Friction</topic><topic>genetic algorithm (GA)</topic><topic>Heuristic methods</topic><topic>linear servo mechanism</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Particle swarm optimization</topic><topic>particle swarm optimization (PSO)</topic><topic>Pattern search</topic><topic>Proportional integral</topic><topic>Search algorithms</topic><topic>Servocontrol</topic><topic>Servomechanisms</topic><topic>Simulated annealing</topic><topic>simulated annealing (SA)</topic><topic>Sine waves</topic><topic>Steady state</topic><topic>surrogate based optimization (SBO)</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdelbar, M.</creatorcontrib><creatorcontrib>Ramadan, Huda</creatorcontrib><creatorcontrib>Khalil, Abdelrahman</creatorcontrib><creatorcontrib>Farag, Hamad</creatorcontrib><creatorcontrib>Bahgat, Mazen</creatorcontrib><creatorcontrib>Rabie, Omar</creatorcontrib><creatorcontrib>El-Shaer, Yasser</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdelbar, M.</au><au>Ramadan, Huda</au><au>Khalil, Abdelrahman</au><au>Farag, Hamad</au><au>Bahgat, Mazen</au><au>Rabie, Omar</au><au>El-Shaer, Yasser</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of PI-Cascaded Controller's Parameters for Linear Servo Mechanism: A Comparative Study of Multiple Algorithms</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>86377</spage><epage>86396</epage><pages>86377-86396</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In numerous industries, especially in automation and industrial processes, the linear servo mechanism is used. However, the parameters of the friction and backlash models are frequently unknown for servomechanism systems, resulting in system uncertainty. High steady-state inaccuracy is caused by friction, whereas undesired vibration is caused by blowback. In servomechanism systems, friction is an issue that is still not sufficiently addressed by a realistic model. To address these challenges, this research on the linear servo system is controlled by a proportional-integral (PI-Cascaded) controller, which enables systems to respond more rapidly, reduce or reject disturbance, and arrive at a steady state more quickly. Moreover, the controller's parameters are crucial to getting the best performance from a particular controller. As a result, the controller settings were adjusted using four different meta-heuristic optimization algorithms: Surrogate Based Optimization (SBO), Hybrid Genetic Pattern Search Algorithm (HGSPA), Particle Swarm Optimization (PSO), and Simulated Annealing (SA) with four objective functions: Integral Square Error (ISE), Integral Absolute Error (IAE), Integral Time Square Error (ITSE), and Integral Time Absolute Error (ITAE). Throughout the system's experimental testing, 50 cm was employed as the reference input. Negligible overshoot, quick rise and settling times, and excellent responsiveness are all characteristics of the PSO algorithm with ITSE objective function. Moreover, to assess the system's robustness. A 50 N force was applied to the system, and a sine wave signal is input into the system. The system shows remarkable stability and resilience throughout the 50 N load experimentation test.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3304333</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-7486-0212</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023, Vol.11, p.86377-86396
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2023_3304333
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Actuators
Algorithms
Cascaded controller
Comparative studies
Control systems
Controllers
DC motors
Errors
Friction
genetic algorithm (GA)
Heuristic methods
linear servo mechanism
Mathematical models
Optimization
Parameters
Particle swarm optimization
particle swarm optimization (PSO)
Pattern search
Proportional integral
Search algorithms
Servocontrol
Servomechanisms
Simulated annealing
simulated annealing (SA)
Sine waves
Steady state
surrogate based optimization (SBO)
Tuning
title Optimization of PI-Cascaded Controller's Parameters for Linear Servo Mechanism: A Comparative Study of Multiple Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T02%3A59%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20PI-Cascaded%20Controller's%20Parameters%20for%20Linear%20Servo%20Mechanism:%20A%20Comparative%20Study%20of%20Multiple%20Algorithms&rft.jtitle=IEEE%20access&rft.au=Abdelbar,%20M.&rft.date=2023&rft.volume=11&rft.spage=86377&rft.epage=86396&rft.pages=86377-86396&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3304333&rft_dat=%3Cproquest_cross%3E2853025577%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2853025577&rft_id=info:pmid/&rft_ieee_id=10214555&rft_doaj_id=oai_doaj_org_article_b543da0c92724836a0de8a6d7bbb3bda&rfr_iscdi=true