Efficient Design of Read Voltages and LDPC codes in NAND Flash Memory using Density Evolution

Low-density parity-check (LDPC) codes play an important role in the reliability enhancement of commercial NAND flash memory. Unfortunately, due to the requirement of the reading speed of NAND flash memory, the LDPC decoder will not obtain the precise soft information to achieve the performance of ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: DUANGTHONGi, C., Phakphisut, W., Wardkein, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator DUANGTHONGi, C.
Phakphisut, W.
Wardkein, P.
description Low-density parity-check (LDPC) codes play an important role in the reliability enhancement of commercial NAND flash memory. Unfortunately, due to the requirement of the reading speed of NAND flash memory, the LDPC decoder will not obtain the precise soft information to achieve the performance of maximum likelihood decoding. In this work, we use a density evolution (DE) algorithm to reveal the decoding threshold of the LDPC decoder affected by the read voltages. We propose the efficient design of read voltages so that the LDPC decoder has the lowest decoding threshold. Therefore, this method can guarantee that the designed read voltages are suitable for a given LDPC code. Moreover, since we found that the designed read voltages are related to the structure of the LDPC code, the joint design of the read voltages and LDPC code is then proposed to achieve the capacity of NAND flash memory. The simulation results demonstrate that our proposed design significantly improves the frame error rate (FER) performance of NAND flash memory.
doi_str_mv 10.1109/ACCESS.2023.3296250
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3296250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10185019</ieee_id><doaj_id>oai_doaj_org_article_8ab5be5022154d708f9dd59440a4a052</doaj_id><sourcerecordid>2842169331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-20ee1c9657bb318da8e2a1605148707bb43d46f65e841204ca59891ef3d364d53</originalsourceid><addsrcrecordid>eNpNUdtKAzEQXUTBov0CfQj43JrrNnks23qBesGqbxLSzWxN2W402Qr9e1O3SOdlZg5zzgxzsuyC4CEhWF2Pi2I6nw8ppmzIqMqpwEdZj5JcDZhg-fFBfZr1Y1zhFDJBYtTLPqZV5UoHTYsmEN2yQb5CL2Asevd1a5YQkWksmk2eC1R6m1rXoMfx4wTd1CZ-ogdY-7BFm-iaZVJoomu3aPrj603rfHOenVSmjtDf57Ps7Wb6WtwNZk-398V4NiiZUO2AYgBSqlyMFgtGpDUSqCE5FoTLEU4gZ5bnVS5AckIxL41QUhGomGU5t4KdZfedrvVmpb-CW5uw1d44_Qf4sNQmtK6sQUuzEAsQmFIiuB1hWSlrheIcG26woEnrqtP6Cv57A7HVK78JTTpfU8l3r2SMpCnWTZXBxxig-t9KsN7Zojtb9M4WvbclsS47lgOAAwaRAhPFfgFutoXP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842169331</pqid></control><display><type>article</type><title>Efficient Design of Read Voltages and LDPC codes in NAND Flash Memory using Density Evolution</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>DUANGTHONGi, C. ; Phakphisut, W. ; Wardkein, P.</creator><creatorcontrib>DUANGTHONGi, C. ; Phakphisut, W. ; Wardkein, P.</creatorcontrib><description>Low-density parity-check (LDPC) codes play an important role in the reliability enhancement of commercial NAND flash memory. Unfortunately, due to the requirement of the reading speed of NAND flash memory, the LDPC decoder will not obtain the precise soft information to achieve the performance of maximum likelihood decoding. In this work, we use a density evolution (DE) algorithm to reveal the decoding threshold of the LDPC decoder affected by the read voltages. We propose the efficient design of read voltages so that the LDPC decoder has the lowest decoding threshold. Therefore, this method can guarantee that the designed read voltages are suitable for a given LDPC code. Moreover, since we found that the designed read voltages are related to the structure of the LDPC code, the joint design of the read voltages and LDPC code is then proposed to achieve the capacity of NAND flash memory. The simulation results demonstrate that our proposed design significantly improves the frame error rate (FER) performance of NAND flash memory.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3296250</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Channel models ; Codes ; Decoding ; density evolution ; Density functional theory ; Design ; Error correcting codes ; Error correction ; Evolutionary algorithms ; Flash memories ; Flash memory (computers) ; LDPC codes ; Low density parity check codes ; Maximum likelihood decoding ; NAND flash memory ; Parity check codes ; read voltages ; Symbols ; Threshold voltage</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-20ee1c9657bb318da8e2a1605148707bb43d46f65e841204ca59891ef3d364d53</cites><orcidid>0000-0003-4073-9144 ; 0000-0002-6151-8175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10185019$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27612,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>DUANGTHONGi, C.</creatorcontrib><creatorcontrib>Phakphisut, W.</creatorcontrib><creatorcontrib>Wardkein, P.</creatorcontrib><title>Efficient Design of Read Voltages and LDPC codes in NAND Flash Memory using Density Evolution</title><title>IEEE access</title><addtitle>Access</addtitle><description>Low-density parity-check (LDPC) codes play an important role in the reliability enhancement of commercial NAND flash memory. Unfortunately, due to the requirement of the reading speed of NAND flash memory, the LDPC decoder will not obtain the precise soft information to achieve the performance of maximum likelihood decoding. In this work, we use a density evolution (DE) algorithm to reveal the decoding threshold of the LDPC decoder affected by the read voltages. We propose the efficient design of read voltages so that the LDPC decoder has the lowest decoding threshold. Therefore, this method can guarantee that the designed read voltages are suitable for a given LDPC code. Moreover, since we found that the designed read voltages are related to the structure of the LDPC code, the joint design of the read voltages and LDPC code is then proposed to achieve the capacity of NAND flash memory. The simulation results demonstrate that our proposed design significantly improves the frame error rate (FER) performance of NAND flash memory.</description><subject>Channel models</subject><subject>Codes</subject><subject>Decoding</subject><subject>density evolution</subject><subject>Density functional theory</subject><subject>Design</subject><subject>Error correcting codes</subject><subject>Error correction</subject><subject>Evolutionary algorithms</subject><subject>Flash memories</subject><subject>Flash memory (computers)</subject><subject>LDPC codes</subject><subject>Low density parity check codes</subject><subject>Maximum likelihood decoding</subject><subject>NAND flash memory</subject><subject>Parity check codes</subject><subject>read voltages</subject><subject>Symbols</subject><subject>Threshold voltage</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtKAzEQXUTBov0CfQj43JrrNnks23qBesGqbxLSzWxN2W402Qr9e1O3SOdlZg5zzgxzsuyC4CEhWF2Pi2I6nw8ppmzIqMqpwEdZj5JcDZhg-fFBfZr1Y1zhFDJBYtTLPqZV5UoHTYsmEN2yQb5CL2Asevd1a5YQkWksmk2eC1R6m1rXoMfx4wTd1CZ-ogdY-7BFm-iaZVJoomu3aPrj603rfHOenVSmjtDf57Ps7Wb6WtwNZk-398V4NiiZUO2AYgBSqlyMFgtGpDUSqCE5FoTLEU4gZ5bnVS5AckIxL41QUhGomGU5t4KdZfedrvVmpb-CW5uw1d44_Qf4sNQmtK6sQUuzEAsQmFIiuB1hWSlrheIcG26woEnrqtP6Cv57A7HVK78JTTpfU8l3r2SMpCnWTZXBxxig-t9KsN7Zojtb9M4WvbclsS47lgOAAwaRAhPFfgFutoXP</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>DUANGTHONGi, C.</creator><creator>Phakphisut, W.</creator><creator>Wardkein, P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4073-9144</orcidid><orcidid>https://orcid.org/0000-0002-6151-8175</orcidid></search><sort><creationdate>20230101</creationdate><title>Efficient Design of Read Voltages and LDPC codes in NAND Flash Memory using Density Evolution</title><author>DUANGTHONGi, C. ; Phakphisut, W. ; Wardkein, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-20ee1c9657bb318da8e2a1605148707bb43d46f65e841204ca59891ef3d364d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Channel models</topic><topic>Codes</topic><topic>Decoding</topic><topic>density evolution</topic><topic>Density functional theory</topic><topic>Design</topic><topic>Error correcting codes</topic><topic>Error correction</topic><topic>Evolutionary algorithms</topic><topic>Flash memories</topic><topic>Flash memory (computers)</topic><topic>LDPC codes</topic><topic>Low density parity check codes</topic><topic>Maximum likelihood decoding</topic><topic>NAND flash memory</topic><topic>Parity check codes</topic><topic>read voltages</topic><topic>Symbols</topic><topic>Threshold voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DUANGTHONGi, C.</creatorcontrib><creatorcontrib>Phakphisut, W.</creatorcontrib><creatorcontrib>Wardkein, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DUANGTHONGi, C.</au><au>Phakphisut, W.</au><au>Wardkein, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Design of Read Voltages and LDPC codes in NAND Flash Memory using Density Evolution</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Low-density parity-check (LDPC) codes play an important role in the reliability enhancement of commercial NAND flash memory. Unfortunately, due to the requirement of the reading speed of NAND flash memory, the LDPC decoder will not obtain the precise soft information to achieve the performance of maximum likelihood decoding. In this work, we use a density evolution (DE) algorithm to reveal the decoding threshold of the LDPC decoder affected by the read voltages. We propose the efficient design of read voltages so that the LDPC decoder has the lowest decoding threshold. Therefore, this method can guarantee that the designed read voltages are suitable for a given LDPC code. Moreover, since we found that the designed read voltages are related to the structure of the LDPC code, the joint design of the read voltages and LDPC code is then proposed to achieve the capacity of NAND flash memory. The simulation results demonstrate that our proposed design significantly improves the frame error rate (FER) performance of NAND flash memory.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3296250</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4073-9144</orcidid><orcidid>https://orcid.org/0000-0002-6151-8175</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2023_3296250
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Channel models
Codes
Decoding
density evolution
Density functional theory
Design
Error correcting codes
Error correction
Evolutionary algorithms
Flash memories
Flash memory (computers)
LDPC codes
Low density parity check codes
Maximum likelihood decoding
NAND flash memory
Parity check codes
read voltages
Symbols
Threshold voltage
title Efficient Design of Read Voltages and LDPC codes in NAND Flash Memory using Density Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A31%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Design%20of%20Read%20Voltages%20and%20LDPC%20codes%20in%20NAND%20Flash%20Memory%20using%20Density%20Evolution&rft.jtitle=IEEE%20access&rft.au=DUANGTHONGi,%20C.&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3296250&rft_dat=%3Cproquest_cross%3E2842169331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2842169331&rft_id=info:pmid/&rft_ieee_id=10185019&rft_doaj_id=oai_doaj_org_article_8ab5be5022154d708f9dd59440a4a052&rfr_iscdi=true