Inferring Trips and Origin-Destination Flows from Wi-Fi Probe Data: A case study of campus Wi-Fi network
This work introduces an alternative solution to costly conventional approaches for large-scale travel behavior data collection by utilizing an opportunistic sensing data source i.e., Wi-Fi probe data. Through our case study of Chiang Mai University campus as a city, we developed a framework for infe...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Jundee, Thanisorn Phithakkitnukoon, Santi Ratti, Carlo |
description | This work introduces an alternative solution to costly conventional approaches for large-scale travel behavior data collection by utilizing an opportunistic sensing data source i.e., Wi-Fi probe data. Through our case study of Chiang Mai University campus as a city, we developed a framework for inferring and visualizing Wi-Fi data-based travel behavior by demonstrating how a Wi-Fi probe data can be analyzed to infer trips and origin-destination flows. Specifically, our contributions include algorithms developed for inferring spatial presence, residence, stay, trip, and trip distribution among places in the campus, as well as campus inflow and outflow. Moreover, to handle the Wi-Fi access point data for the analysis, and visualize the inferred trips and flows, an online visual analytics tool called Wi-Flow is developed as part of this work. Our framework differs from the other studies with our residence and trip detection algorithms that produce the result at the individual level as opposed to the overall network. The experimental results are intuitive and insightful, providing useful information for area management. Our work highlights the usefulness of Wi-Fi probe data in mobility modeling, and, in general, paves the way for opportunistic sensing approach to estimating mobility flows. |
doi_str_mv | 10.1109/ACCESS.2023.3288283 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3288283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10158697</ieee_id><doaj_id>oai_doaj_org_article_e2320e7529c645378c2d688f38aa2c3c</doaj_id><sourcerecordid>2831529550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-7dcc187841d3c88462e506966d246a49a976049a55b8c5509ab7aa7ea4e624ee3</originalsourceid><addsrcrecordid>eNpNUdtKI0EQHWQXFPUL9KFhnyf2Zfq2byEaDQgu6LKPTaWnJnZMprPdE8S_t3WCWC914ZxTRZ2qumB0whi1V9PZ7ObxccIpFxPBjeFGHFUnnClbCynUj2_1cXWe85qWMGUk9Un1vOg7TCn0K_KUwi4T6FvykMIq9PU15iH0MITYk_kmvmbSpbgl_0I9D-RPiksk1zDAbzIlHjKSPOzbNxK70m13-3wA9ji8xvRyVv3sYJPx_JBPq7_zm6fZXX3_cLuYTe9rL6Qdat16z4w2DWuFN6ZRHCVVVqmWNwoaC1YrWpKUS-OlpBaWGkAjNKh4gyhOq8Wo20ZYu10KW0hvLkJwn4OYVg7SEPwGHXLBKWrJrVeNFNp43ipjOmEAuBe-aP0atXYp_t-Xb7h13Ke-nO_Kk1khlgsKSowon2LOCbuvrYy6D4fc6JD7cMgdHCqsy5EVEPEbg0mjrBbvDUqKhg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831529550</pqid></control><display><type>article</type><title>Inferring Trips and Origin-Destination Flows from Wi-Fi Probe Data: A case study of campus Wi-Fi network</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jundee, Thanisorn ; Phithakkitnukoon, Santi ; Ratti, Carlo</creator><creatorcontrib>Jundee, Thanisorn ; Phithakkitnukoon, Santi ; Ratti, Carlo</creatorcontrib><description>This work introduces an alternative solution to costly conventional approaches for large-scale travel behavior data collection by utilizing an opportunistic sensing data source i.e., Wi-Fi probe data. Through our case study of Chiang Mai University campus as a city, we developed a framework for inferring and visualizing Wi-Fi data-based travel behavior by demonstrating how a Wi-Fi probe data can be analyzed to infer trips and origin-destination flows. Specifically, our contributions include algorithms developed for inferring spatial presence, residence, stay, trip, and trip distribution among places in the campus, as well as campus inflow and outflow. Moreover, to handle the Wi-Fi access point data for the analysis, and visualize the inferred trips and flows, an online visual analytics tool called Wi-Flow is developed as part of this work. Our framework differs from the other studies with our residence and trip detection algorithms that produce the result at the individual level as opposed to the overall network. The experimental results are intuitive and insightful, providing useful information for area management. Our work highlights the usefulness of Wi-Fi probe data in mobility modeling, and, in general, paves the way for opportunistic sensing approach to estimating mobility flows.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3288283</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Behavioral sciences ; Case studies ; College campuses ; Data analysis ; Data collection ; Human mobility ; Information management ; origin-destination flow ; Probes ; Sensors ; Surveys ; Travel ; travel behavior ; trip inference ; Urban areas ; urban informatics ; Visual analytics ; visual analytics tool ; Wi-Fi probe data ; Wireless fidelity</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-7dcc187841d3c88462e506966d246a49a976049a55b8c5509ab7aa7ea4e624ee3</cites><orcidid>0000-0002-5716-9363</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10158697$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Jundee, Thanisorn</creatorcontrib><creatorcontrib>Phithakkitnukoon, Santi</creatorcontrib><creatorcontrib>Ratti, Carlo</creatorcontrib><title>Inferring Trips and Origin-Destination Flows from Wi-Fi Probe Data: A case study of campus Wi-Fi network</title><title>IEEE access</title><addtitle>Access</addtitle><description>This work introduces an alternative solution to costly conventional approaches for large-scale travel behavior data collection by utilizing an opportunistic sensing data source i.e., Wi-Fi probe data. Through our case study of Chiang Mai University campus as a city, we developed a framework for inferring and visualizing Wi-Fi data-based travel behavior by demonstrating how a Wi-Fi probe data can be analyzed to infer trips and origin-destination flows. Specifically, our contributions include algorithms developed for inferring spatial presence, residence, stay, trip, and trip distribution among places in the campus, as well as campus inflow and outflow. Moreover, to handle the Wi-Fi access point data for the analysis, and visualize the inferred trips and flows, an online visual analytics tool called Wi-Flow is developed as part of this work. Our framework differs from the other studies with our residence and trip detection algorithms that produce the result at the individual level as opposed to the overall network. The experimental results are intuitive and insightful, providing useful information for area management. Our work highlights the usefulness of Wi-Fi probe data in mobility modeling, and, in general, paves the way for opportunistic sensing approach to estimating mobility flows.</description><subject>Algorithms</subject><subject>Behavioral sciences</subject><subject>Case studies</subject><subject>College campuses</subject><subject>Data analysis</subject><subject>Data collection</subject><subject>Human mobility</subject><subject>Information management</subject><subject>origin-destination flow</subject><subject>Probes</subject><subject>Sensors</subject><subject>Surveys</subject><subject>Travel</subject><subject>travel behavior</subject><subject>trip inference</subject><subject>Urban areas</subject><subject>urban informatics</subject><subject>Visual analytics</subject><subject>visual analytics tool</subject><subject>Wi-Fi probe data</subject><subject>Wireless fidelity</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtKI0EQHWQXFPUL9KFhnyf2Zfq2byEaDQgu6LKPTaWnJnZMprPdE8S_t3WCWC914ZxTRZ2qumB0whi1V9PZ7ObxccIpFxPBjeFGHFUnnClbCynUj2_1cXWe85qWMGUk9Un1vOg7TCn0K_KUwi4T6FvykMIq9PU15iH0MITYk_kmvmbSpbgl_0I9D-RPiksk1zDAbzIlHjKSPOzbNxK70m13-3wA9ji8xvRyVv3sYJPx_JBPq7_zm6fZXX3_cLuYTe9rL6Qdat16z4w2DWuFN6ZRHCVVVqmWNwoaC1YrWpKUS-OlpBaWGkAjNKh4gyhOq8Wo20ZYu10KW0hvLkJwn4OYVg7SEPwGHXLBKWrJrVeNFNp43ipjOmEAuBe-aP0atXYp_t-Xb7h13Ke-nO_Kk1khlgsKSowon2LOCbuvrYy6D4fc6JD7cMgdHCqsy5EVEPEbg0mjrBbvDUqKhg</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Jundee, Thanisorn</creator><creator>Phithakkitnukoon, Santi</creator><creator>Ratti, Carlo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5716-9363</orcidid></search><sort><creationdate>20230101</creationdate><title>Inferring Trips and Origin-Destination Flows from Wi-Fi Probe Data: A case study of campus Wi-Fi network</title><author>Jundee, Thanisorn ; Phithakkitnukoon, Santi ; Ratti, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-7dcc187841d3c88462e506966d246a49a976049a55b8c5509ab7aa7ea4e624ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Behavioral sciences</topic><topic>Case studies</topic><topic>College campuses</topic><topic>Data analysis</topic><topic>Data collection</topic><topic>Human mobility</topic><topic>Information management</topic><topic>origin-destination flow</topic><topic>Probes</topic><topic>Sensors</topic><topic>Surveys</topic><topic>Travel</topic><topic>travel behavior</topic><topic>trip inference</topic><topic>Urban areas</topic><topic>urban informatics</topic><topic>Visual analytics</topic><topic>visual analytics tool</topic><topic>Wi-Fi probe data</topic><topic>Wireless fidelity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jundee, Thanisorn</creatorcontrib><creatorcontrib>Phithakkitnukoon, Santi</creatorcontrib><creatorcontrib>Ratti, Carlo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jundee, Thanisorn</au><au>Phithakkitnukoon, Santi</au><au>Ratti, Carlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inferring Trips and Origin-Destination Flows from Wi-Fi Probe Data: A case study of campus Wi-Fi network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This work introduces an alternative solution to costly conventional approaches for large-scale travel behavior data collection by utilizing an opportunistic sensing data source i.e., Wi-Fi probe data. Through our case study of Chiang Mai University campus as a city, we developed a framework for inferring and visualizing Wi-Fi data-based travel behavior by demonstrating how a Wi-Fi probe data can be analyzed to infer trips and origin-destination flows. Specifically, our contributions include algorithms developed for inferring spatial presence, residence, stay, trip, and trip distribution among places in the campus, as well as campus inflow and outflow. Moreover, to handle the Wi-Fi access point data for the analysis, and visualize the inferred trips and flows, an online visual analytics tool called Wi-Flow is developed as part of this work. Our framework differs from the other studies with our residence and trip detection algorithms that produce the result at the individual level as opposed to the overall network. The experimental results are intuitive and insightful, providing useful information for area management. Our work highlights the usefulness of Wi-Fi probe data in mobility modeling, and, in general, paves the way for opportunistic sensing approach to estimating mobility flows.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3288283</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5716-9363</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2023_3288283 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Behavioral sciences Case studies College campuses Data analysis Data collection Human mobility Information management origin-destination flow Probes Sensors Surveys Travel travel behavior trip inference Urban areas urban informatics Visual analytics visual analytics tool Wi-Fi probe data Wireless fidelity |
title | Inferring Trips and Origin-Destination Flows from Wi-Fi Probe Data: A case study of campus Wi-Fi network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inferring%20Trips%20and%20Origin-Destination%20Flows%20from%20Wi-Fi%20Probe%20Data:%20A%20case%20study%20of%20campus%20Wi-Fi%20network&rft.jtitle=IEEE%20access&rft.au=Jundee,%20Thanisorn&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3288283&rft_dat=%3Cproquest_cross%3E2831529550%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831529550&rft_id=info:pmid/&rft_ieee_id=10158697&rft_doaj_id=oai_doaj_org_article_e2320e7529c645378c2d688f38aa2c3c&rfr_iscdi=true |