Inferring Trips and Origin-Destination Flows from Wi-Fi Probe Data: A case study of campus Wi-Fi network

This work introduces an alternative solution to costly conventional approaches for large-scale travel behavior data collection by utilizing an opportunistic sensing data source i.e., Wi-Fi probe data. Through our case study of Chiang Mai University campus as a city, we developed a framework for infe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Jundee, Thanisorn, Phithakkitnukoon, Santi, Ratti, Carlo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Jundee, Thanisorn
Phithakkitnukoon, Santi
Ratti, Carlo
description This work introduces an alternative solution to costly conventional approaches for large-scale travel behavior data collection by utilizing an opportunistic sensing data source i.e., Wi-Fi probe data. Through our case study of Chiang Mai University campus as a city, we developed a framework for inferring and visualizing Wi-Fi data-based travel behavior by demonstrating how a Wi-Fi probe data can be analyzed to infer trips and origin-destination flows. Specifically, our contributions include algorithms developed for inferring spatial presence, residence, stay, trip, and trip distribution among places in the campus, as well as campus inflow and outflow. Moreover, to handle the Wi-Fi access point data for the analysis, and visualize the inferred trips and flows, an online visual analytics tool called Wi-Flow is developed as part of this work. Our framework differs from the other studies with our residence and trip detection algorithms that produce the result at the individual level as opposed to the overall network. The experimental results are intuitive and insightful, providing useful information for area management. Our work highlights the usefulness of Wi-Fi probe data in mobility modeling, and, in general, paves the way for opportunistic sensing approach to estimating mobility flows.
doi_str_mv 10.1109/ACCESS.2023.3288283
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3288283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10158697</ieee_id><doaj_id>oai_doaj_org_article_e2320e7529c645378c2d688f38aa2c3c</doaj_id><sourcerecordid>2831529550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-7dcc187841d3c88462e506966d246a49a976049a55b8c5509ab7aa7ea4e624ee3</originalsourceid><addsrcrecordid>eNpNUdtKI0EQHWQXFPUL9KFhnyf2Zfq2byEaDQgu6LKPTaWnJnZMprPdE8S_t3WCWC914ZxTRZ2qumB0whi1V9PZ7ObxccIpFxPBjeFGHFUnnClbCynUj2_1cXWe85qWMGUk9Un1vOg7TCn0K_KUwi4T6FvykMIq9PU15iH0MITYk_kmvmbSpbgl_0I9D-RPiksk1zDAbzIlHjKSPOzbNxK70m13-3wA9ji8xvRyVv3sYJPx_JBPq7_zm6fZXX3_cLuYTe9rL6Qdat16z4w2DWuFN6ZRHCVVVqmWNwoaC1YrWpKUS-OlpBaWGkAjNKh4gyhOq8Wo20ZYu10KW0hvLkJwn4OYVg7SEPwGHXLBKWrJrVeNFNp43ipjOmEAuBe-aP0atXYp_t-Xb7h13Ke-nO_Kk1khlgsKSowon2LOCbuvrYy6D4fc6JD7cMgdHCqsy5EVEPEbg0mjrBbvDUqKhg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831529550</pqid></control><display><type>article</type><title>Inferring Trips and Origin-Destination Flows from Wi-Fi Probe Data: A case study of campus Wi-Fi network</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jundee, Thanisorn ; Phithakkitnukoon, Santi ; Ratti, Carlo</creator><creatorcontrib>Jundee, Thanisorn ; Phithakkitnukoon, Santi ; Ratti, Carlo</creatorcontrib><description>This work introduces an alternative solution to costly conventional approaches for large-scale travel behavior data collection by utilizing an opportunistic sensing data source i.e., Wi-Fi probe data. Through our case study of Chiang Mai University campus as a city, we developed a framework for inferring and visualizing Wi-Fi data-based travel behavior by demonstrating how a Wi-Fi probe data can be analyzed to infer trips and origin-destination flows. Specifically, our contributions include algorithms developed for inferring spatial presence, residence, stay, trip, and trip distribution among places in the campus, as well as campus inflow and outflow. Moreover, to handle the Wi-Fi access point data for the analysis, and visualize the inferred trips and flows, an online visual analytics tool called Wi-Flow is developed as part of this work. Our framework differs from the other studies with our residence and trip detection algorithms that produce the result at the individual level as opposed to the overall network. The experimental results are intuitive and insightful, providing useful information for area management. Our work highlights the usefulness of Wi-Fi probe data in mobility modeling, and, in general, paves the way for opportunistic sensing approach to estimating mobility flows.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3288283</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Behavioral sciences ; Case studies ; College campuses ; Data analysis ; Data collection ; Human mobility ; Information management ; origin-destination flow ; Probes ; Sensors ; Surveys ; Travel ; travel behavior ; trip inference ; Urban areas ; urban informatics ; Visual analytics ; visual analytics tool ; Wi-Fi probe data ; Wireless fidelity</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-7dcc187841d3c88462e506966d246a49a976049a55b8c5509ab7aa7ea4e624ee3</cites><orcidid>0000-0002-5716-9363</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10158697$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Jundee, Thanisorn</creatorcontrib><creatorcontrib>Phithakkitnukoon, Santi</creatorcontrib><creatorcontrib>Ratti, Carlo</creatorcontrib><title>Inferring Trips and Origin-Destination Flows from Wi-Fi Probe Data: A case study of campus Wi-Fi network</title><title>IEEE access</title><addtitle>Access</addtitle><description>This work introduces an alternative solution to costly conventional approaches for large-scale travel behavior data collection by utilizing an opportunistic sensing data source i.e., Wi-Fi probe data. Through our case study of Chiang Mai University campus as a city, we developed a framework for inferring and visualizing Wi-Fi data-based travel behavior by demonstrating how a Wi-Fi probe data can be analyzed to infer trips and origin-destination flows. Specifically, our contributions include algorithms developed for inferring spatial presence, residence, stay, trip, and trip distribution among places in the campus, as well as campus inflow and outflow. Moreover, to handle the Wi-Fi access point data for the analysis, and visualize the inferred trips and flows, an online visual analytics tool called Wi-Flow is developed as part of this work. Our framework differs from the other studies with our residence and trip detection algorithms that produce the result at the individual level as opposed to the overall network. The experimental results are intuitive and insightful, providing useful information for area management. Our work highlights the usefulness of Wi-Fi probe data in mobility modeling, and, in general, paves the way for opportunistic sensing approach to estimating mobility flows.</description><subject>Algorithms</subject><subject>Behavioral sciences</subject><subject>Case studies</subject><subject>College campuses</subject><subject>Data analysis</subject><subject>Data collection</subject><subject>Human mobility</subject><subject>Information management</subject><subject>origin-destination flow</subject><subject>Probes</subject><subject>Sensors</subject><subject>Surveys</subject><subject>Travel</subject><subject>travel behavior</subject><subject>trip inference</subject><subject>Urban areas</subject><subject>urban informatics</subject><subject>Visual analytics</subject><subject>visual analytics tool</subject><subject>Wi-Fi probe data</subject><subject>Wireless fidelity</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtKI0EQHWQXFPUL9KFhnyf2Zfq2byEaDQgu6LKPTaWnJnZMprPdE8S_t3WCWC914ZxTRZ2qumB0whi1V9PZ7ObxccIpFxPBjeFGHFUnnClbCynUj2_1cXWe85qWMGUk9Un1vOg7TCn0K_KUwi4T6FvykMIq9PU15iH0MITYk_kmvmbSpbgl_0I9D-RPiksk1zDAbzIlHjKSPOzbNxK70m13-3wA9ji8xvRyVv3sYJPx_JBPq7_zm6fZXX3_cLuYTe9rL6Qdat16z4w2DWuFN6ZRHCVVVqmWNwoaC1YrWpKUS-OlpBaWGkAjNKh4gyhOq8Wo20ZYu10KW0hvLkJwn4OYVg7SEPwGHXLBKWrJrVeNFNp43ipjOmEAuBe-aP0atXYp_t-Xb7h13Ke-nO_Kk1khlgsKSowon2LOCbuvrYy6D4fc6JD7cMgdHCqsy5EVEPEbg0mjrBbvDUqKhg</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Jundee, Thanisorn</creator><creator>Phithakkitnukoon, Santi</creator><creator>Ratti, Carlo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5716-9363</orcidid></search><sort><creationdate>20230101</creationdate><title>Inferring Trips and Origin-Destination Flows from Wi-Fi Probe Data: A case study of campus Wi-Fi network</title><author>Jundee, Thanisorn ; Phithakkitnukoon, Santi ; Ratti, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-7dcc187841d3c88462e506966d246a49a976049a55b8c5509ab7aa7ea4e624ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Behavioral sciences</topic><topic>Case studies</topic><topic>College campuses</topic><topic>Data analysis</topic><topic>Data collection</topic><topic>Human mobility</topic><topic>Information management</topic><topic>origin-destination flow</topic><topic>Probes</topic><topic>Sensors</topic><topic>Surveys</topic><topic>Travel</topic><topic>travel behavior</topic><topic>trip inference</topic><topic>Urban areas</topic><topic>urban informatics</topic><topic>Visual analytics</topic><topic>visual analytics tool</topic><topic>Wi-Fi probe data</topic><topic>Wireless fidelity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jundee, Thanisorn</creatorcontrib><creatorcontrib>Phithakkitnukoon, Santi</creatorcontrib><creatorcontrib>Ratti, Carlo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jundee, Thanisorn</au><au>Phithakkitnukoon, Santi</au><au>Ratti, Carlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inferring Trips and Origin-Destination Flows from Wi-Fi Probe Data: A case study of campus Wi-Fi network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This work introduces an alternative solution to costly conventional approaches for large-scale travel behavior data collection by utilizing an opportunistic sensing data source i.e., Wi-Fi probe data. Through our case study of Chiang Mai University campus as a city, we developed a framework for inferring and visualizing Wi-Fi data-based travel behavior by demonstrating how a Wi-Fi probe data can be analyzed to infer trips and origin-destination flows. Specifically, our contributions include algorithms developed for inferring spatial presence, residence, stay, trip, and trip distribution among places in the campus, as well as campus inflow and outflow. Moreover, to handle the Wi-Fi access point data for the analysis, and visualize the inferred trips and flows, an online visual analytics tool called Wi-Flow is developed as part of this work. Our framework differs from the other studies with our residence and trip detection algorithms that produce the result at the individual level as opposed to the overall network. The experimental results are intuitive and insightful, providing useful information for area management. Our work highlights the usefulness of Wi-Fi probe data in mobility modeling, and, in general, paves the way for opportunistic sensing approach to estimating mobility flows.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3288283</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5716-9363</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2023_3288283
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Behavioral sciences
Case studies
College campuses
Data analysis
Data collection
Human mobility
Information management
origin-destination flow
Probes
Sensors
Surveys
Travel
travel behavior
trip inference
Urban areas
urban informatics
Visual analytics
visual analytics tool
Wi-Fi probe data
Wireless fidelity
title Inferring Trips and Origin-Destination Flows from Wi-Fi Probe Data: A case study of campus Wi-Fi network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inferring%20Trips%20and%20Origin-Destination%20Flows%20from%20Wi-Fi%20Probe%20Data:%20A%20case%20study%20of%20campus%20Wi-Fi%20network&rft.jtitle=IEEE%20access&rft.au=Jundee,%20Thanisorn&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3288283&rft_dat=%3Cproquest_cross%3E2831529550%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831529550&rft_id=info:pmid/&rft_ieee_id=10158697&rft_doaj_id=oai_doaj_org_article_e2320e7529c645378c2d688f38aa2c3c&rfr_iscdi=true