Optimal Operation of Microgrids with Worst-Case Renewable Energy Outage: A Mixed-Integer Bi-Level Model
With the increasing penetration of renewable energy resources, such as wind and photovoltaic (PV) production, in future microgrids, challenges arise due to the potential interruption of these resources caused by changing weather conditions. In this paper, we propose a mixed-integer quadratic program...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Shakerinia, S. Fattahi Meyabadi, A. Vahedi, M. Salehi, N. Samiei Moghaddami, M. |
description | With the increasing penetration of renewable energy resources, such as wind and photovoltaic (PV) production, in future microgrids, challenges arise due to the potential interruption of these resources caused by changing weather conditions. In this paper, we propose a mixed-integer quadratic programming (MIQP) based bi-level model for the optimal operation of microgrids under worst-case (WC) scenarios of renewable energy resource outages. The upper-level problem formulates the minimization of energy loss and load shedding in a demand-side management (DSM) program, as well as optimal charging and discharging of electric vehicles (EVs) and energy storage systems (ESSs). The lower-level problem models the maximization of renewable energy curtailment to account for the worst-case realization of renewable resource outages. A decomposition and re-formulation method is adopted to solve the proposed bi-level optimization model, which includes binary variables in both levels. The proposed model and algorithm are implemented in the Julia programming language and solved with the Gurobi commercial solver. The model is analyzed using a 33-node microgrid under different cases to evaluate its performance, showcasing optimal microgrid operation results under worst-case renewable resource interruptions. |
doi_str_mv | 10.1109/ACCESS.2023.3285480 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3285480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10148982</ieee_id><doaj_id>oai_doaj_org_article_cdd38d9a605246918ccaafbcfbf484d4</doaj_id><sourcerecordid>2828008725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-b0388f402f67f9605a0266b6b8f97f302ec0ef39fc670f427e7f78ea76a78b263</originalsourceid><addsrcrecordid>eNpNUU1P3DAQjapWAgG_oBws9ZzFsRN_9LZEC6y0aKXSqkfLccapVyHe2l4-_j2GIMRcZjSa997MvKL4XuFFVWF5sWzb1d3dgmBCF5SIphb4S3FMKiZL2lD29VN9VJzFuMM5RG41_LgYtvvk7vWItnsIOjk_IW_RrTPBD8H1ET269A_99SGmstUR0C-Y4FF3I6DVBGF4RttD0gP8RMuMeoK-XE8JBgjo0pUbeIAR3foextPim9VjhLP3fFL8uVr9bm_KzfZ63S43paGNTGWHqRC2xsQybiXDjcaEsY51wkpuKSZgMFgqrWEc25pw4JYL0JxpLjrC6Emxnnl7r3dqH_Jt4Vl57dRbw4dB6ZCcGUGZvqeilzqrkJrJShijte2M7Wwt6r7OXD9mrn3w_w8Qk9r5Q5jy-ooIIvITOWnyFJ2n8stiDGA_VCusXg1Ss0Hq1SD1blBGnc8oBwCfEFUtpCD0BdUEi9Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828008725</pqid></control><display><type>article</type><title>Optimal Operation of Microgrids with Worst-Case Renewable Energy Outage: A Mixed-Integer Bi-Level Model</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Shakerinia, S. ; Fattahi Meyabadi, A. ; Vahedi, M. ; Salehi, N. ; Samiei Moghaddami, M.</creator><creatorcontrib>Shakerinia, S. ; Fattahi Meyabadi, A. ; Vahedi, M. ; Salehi, N. ; Samiei Moghaddami, M.</creatorcontrib><description>With the increasing penetration of renewable energy resources, such as wind and photovoltaic (PV) production, in future microgrids, challenges arise due to the potential interruption of these resources caused by changing weather conditions. In this paper, we propose a mixed-integer quadratic programming (MIQP) based bi-level model for the optimal operation of microgrids under worst-case (WC) scenarios of renewable energy resource outages. The upper-level problem formulates the minimization of energy loss and load shedding in a demand-side management (DSM) program, as well as optimal charging and discharging of electric vehicles (EVs) and energy storage systems (ESSs). The lower-level problem models the maximization of renewable energy curtailment to account for the worst-case realization of renewable resource outages. A decomposition and re-formulation method is adopted to solve the proposed bi-level optimization model, which includes binary variables in both levels. The proposed model and algorithm are implemented in the Julia programming language and solved with the Gurobi commercial solver. The model is analyzed using a 33-node microgrid under different cases to evaluate its performance, showcasing optimal microgrid operation results under worst-case renewable resource interruptions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3285480</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Batteries ; Costs ; decomposition method ; Distributed generation ; Electric vehicles ; Energy ; Energy management ; Energy sources ; Energy storage ; Load shedding ; Microgrid ; Microgrids ; Mixed integer ; Optimization ; Optimization models ; Outages ; Photovoltaic cells ; Programming languages ; Quadratic programming ; Renewable energy ; Renewable energy sources ; Renewable resources ; Storage systems ; Weather</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-b0388f402f67f9605a0266b6b8f97f302ec0ef39fc670f427e7f78ea76a78b263</cites><orcidid>0000-0001-7302-7296 ; 0000-0002-1337-7056 ; 0009-0009-0959-2149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10148982$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,866,2104,27640,27931,27932,54940</link.rule.ids></links><search><creatorcontrib>Shakerinia, S.</creatorcontrib><creatorcontrib>Fattahi Meyabadi, A.</creatorcontrib><creatorcontrib>Vahedi, M.</creatorcontrib><creatorcontrib>Salehi, N.</creatorcontrib><creatorcontrib>Samiei Moghaddami, M.</creatorcontrib><title>Optimal Operation of Microgrids with Worst-Case Renewable Energy Outage: A Mixed-Integer Bi-Level Model</title><title>IEEE access</title><addtitle>Access</addtitle><description>With the increasing penetration of renewable energy resources, such as wind and photovoltaic (PV) production, in future microgrids, challenges arise due to the potential interruption of these resources caused by changing weather conditions. In this paper, we propose a mixed-integer quadratic programming (MIQP) based bi-level model for the optimal operation of microgrids under worst-case (WC) scenarios of renewable energy resource outages. The upper-level problem formulates the minimization of energy loss and load shedding in a demand-side management (DSM) program, as well as optimal charging and discharging of electric vehicles (EVs) and energy storage systems (ESSs). The lower-level problem models the maximization of renewable energy curtailment to account for the worst-case realization of renewable resource outages. A decomposition and re-formulation method is adopted to solve the proposed bi-level optimization model, which includes binary variables in both levels. The proposed model and algorithm are implemented in the Julia programming language and solved with the Gurobi commercial solver. The model is analyzed using a 33-node microgrid under different cases to evaluate its performance, showcasing optimal microgrid operation results under worst-case renewable resource interruptions.</description><subject>Algorithms</subject><subject>Batteries</subject><subject>Costs</subject><subject>decomposition method</subject><subject>Distributed generation</subject><subject>Electric vehicles</subject><subject>Energy</subject><subject>Energy management</subject><subject>Energy sources</subject><subject>Energy storage</subject><subject>Load shedding</subject><subject>Microgrid</subject><subject>Microgrids</subject><subject>Mixed integer</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Outages</subject><subject>Photovoltaic cells</subject><subject>Programming languages</subject><subject>Quadratic programming</subject><subject>Renewable energy</subject><subject>Renewable energy sources</subject><subject>Renewable resources</subject><subject>Storage systems</subject><subject>Weather</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1P3DAQjapWAgG_oBws9ZzFsRN_9LZEC6y0aKXSqkfLccapVyHe2l4-_j2GIMRcZjSa997MvKL4XuFFVWF5sWzb1d3dgmBCF5SIphb4S3FMKiZL2lD29VN9VJzFuMM5RG41_LgYtvvk7vWItnsIOjk_IW_RrTPBD8H1ET269A_99SGmstUR0C-Y4FF3I6DVBGF4RttD0gP8RMuMeoK-XE8JBgjo0pUbeIAR3foextPim9VjhLP3fFL8uVr9bm_KzfZ63S43paGNTGWHqRC2xsQybiXDjcaEsY51wkpuKSZgMFgqrWEc25pw4JYL0JxpLjrC6Emxnnl7r3dqH_Jt4Vl57dRbw4dB6ZCcGUGZvqeilzqrkJrJShijte2M7Wwt6r7OXD9mrn3w_w8Qk9r5Q5jy-ooIIvITOWnyFJ2n8stiDGA_VCusXg1Ss0Hq1SD1blBGnc8oBwCfEFUtpCD0BdUEi9Q</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Shakerinia, S.</creator><creator>Fattahi Meyabadi, A.</creator><creator>Vahedi, M.</creator><creator>Salehi, N.</creator><creator>Samiei Moghaddami, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7302-7296</orcidid><orcidid>https://orcid.org/0000-0002-1337-7056</orcidid><orcidid>https://orcid.org/0009-0009-0959-2149</orcidid></search><sort><creationdate>20230101</creationdate><title>Optimal Operation of Microgrids with Worst-Case Renewable Energy Outage: A Mixed-Integer Bi-Level Model</title><author>Shakerinia, S. ; Fattahi Meyabadi, A. ; Vahedi, M. ; Salehi, N. ; Samiei Moghaddami, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-b0388f402f67f9605a0266b6b8f97f302ec0ef39fc670f427e7f78ea76a78b263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Batteries</topic><topic>Costs</topic><topic>decomposition method</topic><topic>Distributed generation</topic><topic>Electric vehicles</topic><topic>Energy</topic><topic>Energy management</topic><topic>Energy sources</topic><topic>Energy storage</topic><topic>Load shedding</topic><topic>Microgrid</topic><topic>Microgrids</topic><topic>Mixed integer</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Outages</topic><topic>Photovoltaic cells</topic><topic>Programming languages</topic><topic>Quadratic programming</topic><topic>Renewable energy</topic><topic>Renewable energy sources</topic><topic>Renewable resources</topic><topic>Storage systems</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shakerinia, S.</creatorcontrib><creatorcontrib>Fattahi Meyabadi, A.</creatorcontrib><creatorcontrib>Vahedi, M.</creatorcontrib><creatorcontrib>Salehi, N.</creatorcontrib><creatorcontrib>Samiei Moghaddami, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shakerinia, S.</au><au>Fattahi Meyabadi, A.</au><au>Vahedi, M.</au><au>Salehi, N.</au><au>Samiei Moghaddami, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Operation of Microgrids with Worst-Case Renewable Energy Outage: A Mixed-Integer Bi-Level Model</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>With the increasing penetration of renewable energy resources, such as wind and photovoltaic (PV) production, in future microgrids, challenges arise due to the potential interruption of these resources caused by changing weather conditions. In this paper, we propose a mixed-integer quadratic programming (MIQP) based bi-level model for the optimal operation of microgrids under worst-case (WC) scenarios of renewable energy resource outages. The upper-level problem formulates the minimization of energy loss and load shedding in a demand-side management (DSM) program, as well as optimal charging and discharging of electric vehicles (EVs) and energy storage systems (ESSs). The lower-level problem models the maximization of renewable energy curtailment to account for the worst-case realization of renewable resource outages. A decomposition and re-formulation method is adopted to solve the proposed bi-level optimization model, which includes binary variables in both levels. The proposed model and algorithm are implemented in the Julia programming language and solved with the Gurobi commercial solver. The model is analyzed using a 33-node microgrid under different cases to evaluate its performance, showcasing optimal microgrid operation results under worst-case renewable resource interruptions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3285480</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7302-7296</orcidid><orcidid>https://orcid.org/0000-0002-1337-7056</orcidid><orcidid>https://orcid.org/0009-0009-0959-2149</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2023_3285480 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Batteries Costs decomposition method Distributed generation Electric vehicles Energy Energy management Energy sources Energy storage Load shedding Microgrid Microgrids Mixed integer Optimization Optimization models Outages Photovoltaic cells Programming languages Quadratic programming Renewable energy Renewable energy sources Renewable resources Storage systems Weather |
title | Optimal Operation of Microgrids with Worst-Case Renewable Energy Outage: A Mixed-Integer Bi-Level Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T04%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Operation%20of%20Microgrids%20with%20Worst-Case%20Renewable%20Energy%20Outage:%20A%20Mixed-Integer%20Bi-Level%20Model&rft.jtitle=IEEE%20access&rft.au=Shakerinia,%20S.&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3285480&rft_dat=%3Cproquest_cross%3E2828008725%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828008725&rft_id=info:pmid/&rft_ieee_id=10148982&rft_doaj_id=oai_doaj_org_article_cdd38d9a605246918ccaafbcfbf484d4&rfr_iscdi=true |