Optimal Operation of Microgrids with Worst-Case Renewable Energy Outage: A Mixed-Integer Bi-Level Model

With the increasing penetration of renewable energy resources, such as wind and photovoltaic (PV) production, in future microgrids, challenges arise due to the potential interruption of these resources caused by changing weather conditions. In this paper, we propose a mixed-integer quadratic program...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Shakerinia, S., Fattahi Meyabadi, A., Vahedi, M., Salehi, N., Samiei Moghaddami, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Shakerinia, S.
Fattahi Meyabadi, A.
Vahedi, M.
Salehi, N.
Samiei Moghaddami, M.
description With the increasing penetration of renewable energy resources, such as wind and photovoltaic (PV) production, in future microgrids, challenges arise due to the potential interruption of these resources caused by changing weather conditions. In this paper, we propose a mixed-integer quadratic programming (MIQP) based bi-level model for the optimal operation of microgrids under worst-case (WC) scenarios of renewable energy resource outages. The upper-level problem formulates the minimization of energy loss and load shedding in a demand-side management (DSM) program, as well as optimal charging and discharging of electric vehicles (EVs) and energy storage systems (ESSs). The lower-level problem models the maximization of renewable energy curtailment to account for the worst-case realization of renewable resource outages. A decomposition and re-formulation method is adopted to solve the proposed bi-level optimization model, which includes binary variables in both levels. The proposed model and algorithm are implemented in the Julia programming language and solved with the Gurobi commercial solver. The model is analyzed using a 33-node microgrid under different cases to evaluate its performance, showcasing optimal microgrid operation results under worst-case renewable resource interruptions.
doi_str_mv 10.1109/ACCESS.2023.3285480
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3285480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10148982</ieee_id><doaj_id>oai_doaj_org_article_cdd38d9a605246918ccaafbcfbf484d4</doaj_id><sourcerecordid>2828008725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-b0388f402f67f9605a0266b6b8f97f302ec0ef39fc670f427e7f78ea76a78b263</originalsourceid><addsrcrecordid>eNpNUU1P3DAQjapWAgG_oBws9ZzFsRN_9LZEC6y0aKXSqkfLccapVyHe2l4-_j2GIMRcZjSa997MvKL4XuFFVWF5sWzb1d3dgmBCF5SIphb4S3FMKiZL2lD29VN9VJzFuMM5RG41_LgYtvvk7vWItnsIOjk_IW_RrTPBD8H1ET269A_99SGmstUR0C-Y4FF3I6DVBGF4RttD0gP8RMuMeoK-XE8JBgjo0pUbeIAR3foextPim9VjhLP3fFL8uVr9bm_KzfZ63S43paGNTGWHqRC2xsQybiXDjcaEsY51wkpuKSZgMFgqrWEc25pw4JYL0JxpLjrC6Emxnnl7r3dqH_Jt4Vl57dRbw4dB6ZCcGUGZvqeilzqrkJrJShijte2M7Wwt6r7OXD9mrn3w_w8Qk9r5Q5jy-ooIIvITOWnyFJ2n8stiDGA_VCusXg1Ss0Hq1SD1blBGnc8oBwCfEFUtpCD0BdUEi9Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828008725</pqid></control><display><type>article</type><title>Optimal Operation of Microgrids with Worst-Case Renewable Energy Outage: A Mixed-Integer Bi-Level Model</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Shakerinia, S. ; Fattahi Meyabadi, A. ; Vahedi, M. ; Salehi, N. ; Samiei Moghaddami, M.</creator><creatorcontrib>Shakerinia, S. ; Fattahi Meyabadi, A. ; Vahedi, M. ; Salehi, N. ; Samiei Moghaddami, M.</creatorcontrib><description>With the increasing penetration of renewable energy resources, such as wind and photovoltaic (PV) production, in future microgrids, challenges arise due to the potential interruption of these resources caused by changing weather conditions. In this paper, we propose a mixed-integer quadratic programming (MIQP) based bi-level model for the optimal operation of microgrids under worst-case (WC) scenarios of renewable energy resource outages. The upper-level problem formulates the minimization of energy loss and load shedding in a demand-side management (DSM) program, as well as optimal charging and discharging of electric vehicles (EVs) and energy storage systems (ESSs). The lower-level problem models the maximization of renewable energy curtailment to account for the worst-case realization of renewable resource outages. A decomposition and re-formulation method is adopted to solve the proposed bi-level optimization model, which includes binary variables in both levels. The proposed model and algorithm are implemented in the Julia programming language and solved with the Gurobi commercial solver. The model is analyzed using a 33-node microgrid under different cases to evaluate its performance, showcasing optimal microgrid operation results under worst-case renewable resource interruptions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3285480</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Batteries ; Costs ; decomposition method ; Distributed generation ; Electric vehicles ; Energy ; Energy management ; Energy sources ; Energy storage ; Load shedding ; Microgrid ; Microgrids ; Mixed integer ; Optimization ; Optimization models ; Outages ; Photovoltaic cells ; Programming languages ; Quadratic programming ; Renewable energy ; Renewable energy sources ; Renewable resources ; Storage systems ; Weather</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-b0388f402f67f9605a0266b6b8f97f302ec0ef39fc670f427e7f78ea76a78b263</cites><orcidid>0000-0001-7302-7296 ; 0000-0002-1337-7056 ; 0009-0009-0959-2149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10148982$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,866,2104,27640,27931,27932,54940</link.rule.ids></links><search><creatorcontrib>Shakerinia, S.</creatorcontrib><creatorcontrib>Fattahi Meyabadi, A.</creatorcontrib><creatorcontrib>Vahedi, M.</creatorcontrib><creatorcontrib>Salehi, N.</creatorcontrib><creatorcontrib>Samiei Moghaddami, M.</creatorcontrib><title>Optimal Operation of Microgrids with Worst-Case Renewable Energy Outage: A Mixed-Integer Bi-Level Model</title><title>IEEE access</title><addtitle>Access</addtitle><description>With the increasing penetration of renewable energy resources, such as wind and photovoltaic (PV) production, in future microgrids, challenges arise due to the potential interruption of these resources caused by changing weather conditions. In this paper, we propose a mixed-integer quadratic programming (MIQP) based bi-level model for the optimal operation of microgrids under worst-case (WC) scenarios of renewable energy resource outages. The upper-level problem formulates the minimization of energy loss and load shedding in a demand-side management (DSM) program, as well as optimal charging and discharging of electric vehicles (EVs) and energy storage systems (ESSs). The lower-level problem models the maximization of renewable energy curtailment to account for the worst-case realization of renewable resource outages. A decomposition and re-formulation method is adopted to solve the proposed bi-level optimization model, which includes binary variables in both levels. The proposed model and algorithm are implemented in the Julia programming language and solved with the Gurobi commercial solver. The model is analyzed using a 33-node microgrid under different cases to evaluate its performance, showcasing optimal microgrid operation results under worst-case renewable resource interruptions.</description><subject>Algorithms</subject><subject>Batteries</subject><subject>Costs</subject><subject>decomposition method</subject><subject>Distributed generation</subject><subject>Electric vehicles</subject><subject>Energy</subject><subject>Energy management</subject><subject>Energy sources</subject><subject>Energy storage</subject><subject>Load shedding</subject><subject>Microgrid</subject><subject>Microgrids</subject><subject>Mixed integer</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Outages</subject><subject>Photovoltaic cells</subject><subject>Programming languages</subject><subject>Quadratic programming</subject><subject>Renewable energy</subject><subject>Renewable energy sources</subject><subject>Renewable resources</subject><subject>Storage systems</subject><subject>Weather</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1P3DAQjapWAgG_oBws9ZzFsRN_9LZEC6y0aKXSqkfLccapVyHe2l4-_j2GIMRcZjSa997MvKL4XuFFVWF5sWzb1d3dgmBCF5SIphb4S3FMKiZL2lD29VN9VJzFuMM5RG41_LgYtvvk7vWItnsIOjk_IW_RrTPBD8H1ET269A_99SGmstUR0C-Y4FF3I6DVBGF4RttD0gP8RMuMeoK-XE8JBgjo0pUbeIAR3foextPim9VjhLP3fFL8uVr9bm_KzfZ63S43paGNTGWHqRC2xsQybiXDjcaEsY51wkpuKSZgMFgqrWEc25pw4JYL0JxpLjrC6Emxnnl7r3dqH_Jt4Vl57dRbw4dB6ZCcGUGZvqeilzqrkJrJShijte2M7Wwt6r7OXD9mrn3w_w8Qk9r5Q5jy-ooIIvITOWnyFJ2n8stiDGA_VCusXg1Ss0Hq1SD1blBGnc8oBwCfEFUtpCD0BdUEi9Q</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Shakerinia, S.</creator><creator>Fattahi Meyabadi, A.</creator><creator>Vahedi, M.</creator><creator>Salehi, N.</creator><creator>Samiei Moghaddami, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7302-7296</orcidid><orcidid>https://orcid.org/0000-0002-1337-7056</orcidid><orcidid>https://orcid.org/0009-0009-0959-2149</orcidid></search><sort><creationdate>20230101</creationdate><title>Optimal Operation of Microgrids with Worst-Case Renewable Energy Outage: A Mixed-Integer Bi-Level Model</title><author>Shakerinia, S. ; Fattahi Meyabadi, A. ; Vahedi, M. ; Salehi, N. ; Samiei Moghaddami, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-b0388f402f67f9605a0266b6b8f97f302ec0ef39fc670f427e7f78ea76a78b263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Batteries</topic><topic>Costs</topic><topic>decomposition method</topic><topic>Distributed generation</topic><topic>Electric vehicles</topic><topic>Energy</topic><topic>Energy management</topic><topic>Energy sources</topic><topic>Energy storage</topic><topic>Load shedding</topic><topic>Microgrid</topic><topic>Microgrids</topic><topic>Mixed integer</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Outages</topic><topic>Photovoltaic cells</topic><topic>Programming languages</topic><topic>Quadratic programming</topic><topic>Renewable energy</topic><topic>Renewable energy sources</topic><topic>Renewable resources</topic><topic>Storage systems</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shakerinia, S.</creatorcontrib><creatorcontrib>Fattahi Meyabadi, A.</creatorcontrib><creatorcontrib>Vahedi, M.</creatorcontrib><creatorcontrib>Salehi, N.</creatorcontrib><creatorcontrib>Samiei Moghaddami, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shakerinia, S.</au><au>Fattahi Meyabadi, A.</au><au>Vahedi, M.</au><au>Salehi, N.</au><au>Samiei Moghaddami, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Operation of Microgrids with Worst-Case Renewable Energy Outage: A Mixed-Integer Bi-Level Model</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>With the increasing penetration of renewable energy resources, such as wind and photovoltaic (PV) production, in future microgrids, challenges arise due to the potential interruption of these resources caused by changing weather conditions. In this paper, we propose a mixed-integer quadratic programming (MIQP) based bi-level model for the optimal operation of microgrids under worst-case (WC) scenarios of renewable energy resource outages. The upper-level problem formulates the minimization of energy loss and load shedding in a demand-side management (DSM) program, as well as optimal charging and discharging of electric vehicles (EVs) and energy storage systems (ESSs). The lower-level problem models the maximization of renewable energy curtailment to account for the worst-case realization of renewable resource outages. A decomposition and re-formulation method is adopted to solve the proposed bi-level optimization model, which includes binary variables in both levels. The proposed model and algorithm are implemented in the Julia programming language and solved with the Gurobi commercial solver. The model is analyzed using a 33-node microgrid under different cases to evaluate its performance, showcasing optimal microgrid operation results under worst-case renewable resource interruptions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3285480</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7302-7296</orcidid><orcidid>https://orcid.org/0000-0002-1337-7056</orcidid><orcidid>https://orcid.org/0009-0009-0959-2149</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2023_3285480
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Batteries
Costs
decomposition method
Distributed generation
Electric vehicles
Energy
Energy management
Energy sources
Energy storage
Load shedding
Microgrid
Microgrids
Mixed integer
Optimization
Optimization models
Outages
Photovoltaic cells
Programming languages
Quadratic programming
Renewable energy
Renewable energy sources
Renewable resources
Storage systems
Weather
title Optimal Operation of Microgrids with Worst-Case Renewable Energy Outage: A Mixed-Integer Bi-Level Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T04%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Operation%20of%20Microgrids%20with%20Worst-Case%20Renewable%20Energy%20Outage:%20A%20Mixed-Integer%20Bi-Level%20Model&rft.jtitle=IEEE%20access&rft.au=Shakerinia,%20S.&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3285480&rft_dat=%3Cproquest_cross%3E2828008725%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828008725&rft_id=info:pmid/&rft_ieee_id=10148982&rft_doaj_id=oai_doaj_org_article_cdd38d9a605246918ccaafbcfbf484d4&rfr_iscdi=true