Decentralized machine learning training: a survey on synchronization, consolidation, and topologies
Federated Learning (FL) has emerged as a promising methodology for collaboratively training machine learning models on decentralized devices. Notwithstanding, the effective synchronization and consolidation of model updates originating from diverse devices, in conjunction with the appropriate config...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Khan, Qazi Waqas Khan, Anam Nawaz Rizwan, Atif Ahmad, Rashid Khan, Salabat Kim, Do Hyeun |
description | Federated Learning (FL) has emerged as a promising methodology for collaboratively training machine learning models on decentralized devices. Notwithstanding, the effective synchronization and consolidation of model updates originating from diverse devices, in conjunction with the appropriate configuration of network topologies, persist as crucial obstacles. This paper provides a comprehensive analysis of the current techniques and methodologies utilized in the synchronization, consolidation, and network topologies of Federated Learning. The present study explores diverse synchronization strategies utilized for the purpose of coordinating model updates from geographically distributed cross-silo edge nodes. The study takes into account several factors, including communication efficiency and privacy preservation. This study delves into the intricacies of model consolidation techniques, such as weighted and personalized aggregation methods, to evaluate their efficacy in consolidation of local model updates into a global model, while taking into consideration statistical heterogeneity and resource constraints. In addition, an examination is conducted on the importance of network topologies in Federated Learning (FL), taking into account their influence on communication efficacy, confidentiality, expandability, resilience, and resource allocation. The survey assesses and contrasts the efficacies and constraints of extant methodologies, discerns deficiencies in present investigations, and provides insights for future progressions. The objective of this survey is to provide a thorough examination of FL synchronization, consolidation, and network topologies, with the intention of offering a valuable reference for individuals engaged in Federated Learning, including researchers, practitioners, and stakeholders. This survey aims to support the advancement of more effective and resilient FL systems. |
doi_str_mv | 10.1109/ACCESS.2023.3284976 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3284976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10147820</ieee_id><doaj_id>oai_doaj_org_article_d7df23585ac646bf9ffe75b2c76c87de</doaj_id><sourcerecordid>2836054115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-53a206a16f5464dc488175642b7fcc8a207a9ea8121efc3ae7ce651e57999cc23</originalsourceid><addsrcrecordid>eNpNUU1rGzEQXUILDWl-QXsQ5Fq7-v7oLbhpGwj0kOQs5NmRI7ORXGldcH591l1TMpeZeTPvzcDruk-MLhmj7uv1anVzf7_klIul4FY6o8-6c860Wwgl9Ls39YfusrUtncJOkDLnHXxHwDzWMKQX7MlzgKeUkQwYak55Q6ZJOhbfSCBtX__igZRM2iHDUy05vYQxlfyFQMmtDKk_tSH3ZCy7MpRNwvaxex_D0PDylC-6xx83D6tfi7vfP29X13cLkNSNCyUCpzowHZXUsgdpLTNKS742EcBOQxMcBss4wwgioAHUiqEyzjkALi6621m3L2HrdzU9h3rwJST_Dyh140MdEwzoe9NHLpRVAbTU6-hiRKPWHIwGa3qctK5mrV0tf_bYRr8t-5qn9z23QlMlGVPTlpi3oJbWKsb_Vxn1R3P8bI4_muNP5kyszzMrIeIbBpPGcipeAVoxjKU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836054115</pqid></control><display><type>article</type><title>Decentralized machine learning training: a survey on synchronization, consolidation, and topologies</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Khan, Qazi Waqas ; Khan, Anam Nawaz ; Rizwan, Atif ; Ahmad, Rashid ; Khan, Salabat ; Kim, Do Hyeun</creator><creatorcontrib>Khan, Qazi Waqas ; Khan, Anam Nawaz ; Rizwan, Atif ; Ahmad, Rashid ; Khan, Salabat ; Kim, Do Hyeun</creatorcontrib><description>Federated Learning (FL) has emerged as a promising methodology for collaboratively training machine learning models on decentralized devices. Notwithstanding, the effective synchronization and consolidation of model updates originating from diverse devices, in conjunction with the appropriate configuration of network topologies, persist as crucial obstacles. This paper provides a comprehensive analysis of the current techniques and methodologies utilized in the synchronization, consolidation, and network topologies of Federated Learning. The present study explores diverse synchronization strategies utilized for the purpose of coordinating model updates from geographically distributed cross-silo edge nodes. The study takes into account several factors, including communication efficiency and privacy preservation. This study delves into the intricacies of model consolidation techniques, such as weighted and personalized aggregation methods, to evaluate their efficacy in consolidation of local model updates into a global model, while taking into consideration statistical heterogeneity and resource constraints. In addition, an examination is conducted on the importance of network topologies in Federated Learning (FL), taking into account their influence on communication efficacy, confidentiality, expandability, resilience, and resource allocation. The survey assesses and contrasts the efficacies and constraints of extant methodologies, discerns deficiencies in present investigations, and provides insights for future progressions. The objective of this survey is to provide a thorough examination of FL synchronization, consolidation, and network topologies, with the intention of offering a valuable reference for individuals engaged in Federated Learning, including researchers, practitioners, and stakeholders. This survey aims to support the advancement of more effective and resilient FL systems.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3284976</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Asynchronous ; Consolidation ; Federated Learning ; Geographical distribution ; Heterogeneity ; Machine learning ; Network topologies ; Network Topology ; Progressions ; Resilience ; Resource allocation ; Semi Asynchronous Weight Aggregation ; Synchronism ; Synchronous ; System effectiveness ; Training</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-53a206a16f5464dc488175642b7fcc8a207a9ea8121efc3ae7ce651e57999cc23</citedby><cites>FETCH-LOGICAL-c409t-53a206a16f5464dc488175642b7fcc8a207a9ea8121efc3ae7ce651e57999cc23</cites><orcidid>0000-0002-4031-3920 ; 0000-0001-6260-5820 ; 0000-0002-3457-2301 ; 0000-0001-6669-8147 ; 0000-0001-6922-7412 ; 0000-0003-3737-9037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10147820$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Khan, Qazi Waqas</creatorcontrib><creatorcontrib>Khan, Anam Nawaz</creatorcontrib><creatorcontrib>Rizwan, Atif</creatorcontrib><creatorcontrib>Ahmad, Rashid</creatorcontrib><creatorcontrib>Khan, Salabat</creatorcontrib><creatorcontrib>Kim, Do Hyeun</creatorcontrib><title>Decentralized machine learning training: a survey on synchronization, consolidation, and topologies</title><title>IEEE access</title><addtitle>Access</addtitle><description>Federated Learning (FL) has emerged as a promising methodology for collaboratively training machine learning models on decentralized devices. Notwithstanding, the effective synchronization and consolidation of model updates originating from diverse devices, in conjunction with the appropriate configuration of network topologies, persist as crucial obstacles. This paper provides a comprehensive analysis of the current techniques and methodologies utilized in the synchronization, consolidation, and network topologies of Federated Learning. The present study explores diverse synchronization strategies utilized for the purpose of coordinating model updates from geographically distributed cross-silo edge nodes. The study takes into account several factors, including communication efficiency and privacy preservation. This study delves into the intricacies of model consolidation techniques, such as weighted and personalized aggregation methods, to evaluate their efficacy in consolidation of local model updates into a global model, while taking into consideration statistical heterogeneity and resource constraints. In addition, an examination is conducted on the importance of network topologies in Federated Learning (FL), taking into account their influence on communication efficacy, confidentiality, expandability, resilience, and resource allocation. The survey assesses and contrasts the efficacies and constraints of extant methodologies, discerns deficiencies in present investigations, and provides insights for future progressions. The objective of this survey is to provide a thorough examination of FL synchronization, consolidation, and network topologies, with the intention of offering a valuable reference for individuals engaged in Federated Learning, including researchers, practitioners, and stakeholders. This survey aims to support the advancement of more effective and resilient FL systems.</description><subject>Asynchronous</subject><subject>Consolidation</subject><subject>Federated Learning</subject><subject>Geographical distribution</subject><subject>Heterogeneity</subject><subject>Machine learning</subject><subject>Network topologies</subject><subject>Network Topology</subject><subject>Progressions</subject><subject>Resilience</subject><subject>Resource allocation</subject><subject>Semi Asynchronous Weight Aggregation</subject><subject>Synchronism</subject><subject>Synchronous</subject><subject>System effectiveness</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQXUILDWl-QXsQ5Fq7-v7oLbhpGwj0kOQs5NmRI7ORXGldcH591l1TMpeZeTPvzcDruk-MLhmj7uv1anVzf7_klIul4FY6o8-6c860Wwgl9Ls39YfusrUtncJOkDLnHXxHwDzWMKQX7MlzgKeUkQwYak55Q6ZJOhbfSCBtX__igZRM2iHDUy05vYQxlfyFQMmtDKk_tSH3ZCy7MpRNwvaxex_D0PDylC-6xx83D6tfi7vfP29X13cLkNSNCyUCpzowHZXUsgdpLTNKS742EcBOQxMcBss4wwgioAHUiqEyzjkALi6621m3L2HrdzU9h3rwJST_Dyh140MdEwzoe9NHLpRVAbTU6-hiRKPWHIwGa3qctK5mrV0tf_bYRr8t-5qn9z23QlMlGVPTlpi3oJbWKsb_Vxn1R3P8bI4_muNP5kyszzMrIeIbBpPGcipeAVoxjKU</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Khan, Qazi Waqas</creator><creator>Khan, Anam Nawaz</creator><creator>Rizwan, Atif</creator><creator>Ahmad, Rashid</creator><creator>Khan, Salabat</creator><creator>Kim, Do Hyeun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4031-3920</orcidid><orcidid>https://orcid.org/0000-0001-6260-5820</orcidid><orcidid>https://orcid.org/0000-0002-3457-2301</orcidid><orcidid>https://orcid.org/0000-0001-6669-8147</orcidid><orcidid>https://orcid.org/0000-0001-6922-7412</orcidid><orcidid>https://orcid.org/0000-0003-3737-9037</orcidid></search><sort><creationdate>20230101</creationdate><title>Decentralized machine learning training: a survey on synchronization, consolidation, and topologies</title><author>Khan, Qazi Waqas ; Khan, Anam Nawaz ; Rizwan, Atif ; Ahmad, Rashid ; Khan, Salabat ; Kim, Do Hyeun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-53a206a16f5464dc488175642b7fcc8a207a9ea8121efc3ae7ce651e57999cc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asynchronous</topic><topic>Consolidation</topic><topic>Federated Learning</topic><topic>Geographical distribution</topic><topic>Heterogeneity</topic><topic>Machine learning</topic><topic>Network topologies</topic><topic>Network Topology</topic><topic>Progressions</topic><topic>Resilience</topic><topic>Resource allocation</topic><topic>Semi Asynchronous Weight Aggregation</topic><topic>Synchronism</topic><topic>Synchronous</topic><topic>System effectiveness</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Qazi Waqas</creatorcontrib><creatorcontrib>Khan, Anam Nawaz</creatorcontrib><creatorcontrib>Rizwan, Atif</creatorcontrib><creatorcontrib>Ahmad, Rashid</creatorcontrib><creatorcontrib>Khan, Salabat</creatorcontrib><creatorcontrib>Kim, Do Hyeun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Qazi Waqas</au><au>Khan, Anam Nawaz</au><au>Rizwan, Atif</au><au>Ahmad, Rashid</au><au>Khan, Salabat</au><au>Kim, Do Hyeun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decentralized machine learning training: a survey on synchronization, consolidation, and topologies</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Federated Learning (FL) has emerged as a promising methodology for collaboratively training machine learning models on decentralized devices. Notwithstanding, the effective synchronization and consolidation of model updates originating from diverse devices, in conjunction with the appropriate configuration of network topologies, persist as crucial obstacles. This paper provides a comprehensive analysis of the current techniques and methodologies utilized in the synchronization, consolidation, and network topologies of Federated Learning. The present study explores diverse synchronization strategies utilized for the purpose of coordinating model updates from geographically distributed cross-silo edge nodes. The study takes into account several factors, including communication efficiency and privacy preservation. This study delves into the intricacies of model consolidation techniques, such as weighted and personalized aggregation methods, to evaluate their efficacy in consolidation of local model updates into a global model, while taking into consideration statistical heterogeneity and resource constraints. In addition, an examination is conducted on the importance of network topologies in Federated Learning (FL), taking into account their influence on communication efficacy, confidentiality, expandability, resilience, and resource allocation. The survey assesses and contrasts the efficacies and constraints of extant methodologies, discerns deficiencies in present investigations, and provides insights for future progressions. The objective of this survey is to provide a thorough examination of FL synchronization, consolidation, and network topologies, with the intention of offering a valuable reference for individuals engaged in Federated Learning, including researchers, practitioners, and stakeholders. This survey aims to support the advancement of more effective and resilient FL systems.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3284976</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4031-3920</orcidid><orcidid>https://orcid.org/0000-0001-6260-5820</orcidid><orcidid>https://orcid.org/0000-0002-3457-2301</orcidid><orcidid>https://orcid.org/0000-0001-6669-8147</orcidid><orcidid>https://orcid.org/0000-0001-6922-7412</orcidid><orcidid>https://orcid.org/0000-0003-3737-9037</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2023_3284976 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Asynchronous Consolidation Federated Learning Geographical distribution Heterogeneity Machine learning Network topologies Network Topology Progressions Resilience Resource allocation Semi Asynchronous Weight Aggregation Synchronism Synchronous System effectiveness Training |
title | Decentralized machine learning training: a survey on synchronization, consolidation, and topologies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A54%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decentralized%20machine%20learning%20training:%20a%20survey%20on%20synchronization,%20consolidation,%20and%20topologies&rft.jtitle=IEEE%20access&rft.au=Khan,%20Qazi%20Waqas&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3284976&rft_dat=%3Cproquest_cross%3E2836054115%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836054115&rft_id=info:pmid/&rft_ieee_id=10147820&rft_doaj_id=oai_doaj_org_article_d7df23585ac646bf9ffe75b2c76c87de&rfr_iscdi=true |