Unscented Trainable Kalman Filter Based on Deep Learning Method Considering Incomplete Information
Rapid changes of states and occurrence of data missing in power systems cause accurate state estimation very hard. In this paper, an unscented trainable Kalman filter (UTKF) with a deep learning prediction model is proposed to provide accurate state estimation under incomplete information. First, th...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!