Unscented Trainable Kalman Filter Based on Deep Learning Method Considering Incomplete Information

Rapid changes of states and occurrence of data missing in power systems cause accurate state estimation very hard. In this paper, an unscented trainable Kalman filter (UTKF) with a deep learning prediction model is proposed to provide accurate state estimation under incomplete information. First, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Yu, Yanjie, Li, Qiang, Zhang, Houyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!