Model Predictive Control for Energy-efficient Yaw-stabilizing Torque Vectoring in Electric Vehicles with Four In-wheel Motors

This paper considers the problem of stabilizing and energy-efficient torque vectoring for electric vehicles with four independent in-wheel motors. In electric vehicles with four in-wheel motors, four electric motors are separately attached to the four wheels without an extra drive shaft. The mechani...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Kim, Sang Hyuk, Kim, Kwang-Ki K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Kim, Sang Hyuk
Kim, Kwang-Ki K.
description This paper considers the problem of stabilizing and energy-efficient torque vectoring for electric vehicles with four independent in-wheel motors. In electric vehicles with four in-wheel motors, four electric motors are separately attached to the four wheels without an extra drive shaft. The mechanical and structural nature enables reduction of energy loss during power transmission and securing extra interior space. In addition, independent control of wheel torques can provide better yaw motion stability and improved energy efficiency. This paper proposes two model predictive control (MPC) methods for stability-constrained energy-efficient torque vectoring of four in-wheel motor electric vehicles. For the adaptive weighting factors of multiple objective functions of reference tracking and energy saving, we use exponential functions that vary with the lateral motion and steering input. Depending on the optimal control problem formulation with different dynamical system equations and constraints, the associated predictive controller can be represented as either a linear parameter-varying MPC (LPV-MPC) or nonlinear MPC (NMPC). For LPV-MPC, longitudinal and lateral motions are decoupled, whereas the coupled dynamics of the two-track model are exploited in NMPC. For comparisons and demonstrations of LPV-MPC and NMPC in the MPC of torque vectoring, three driving scenarios are simulated with a high-fidelity vehicle simulation solution, CarMaker (IPG Automotive). In comparison with the built-in IPG driver implemented in CarMaker, we demonstrate fuel efficiency improvements of over 2-3 % on average with guaranteed yaw stability.
doi_str_mv 10.1109/ACCESS.2023.3266330
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3266330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10098798</ieee_id><doaj_id>oai_doaj_org_article_efcb309f22ec44cc81eee76d7f6bdb88</doaj_id><sourcerecordid>2806220434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5703442273a05a7ee43ee91922efddf0724a7a42dc910169109648dbb42efbbb3</originalsourceid><addsrcrecordid>eNpNUV1LHDEUHYpCRf0F9iHQ51kzSWYyeZRhtQuKBbXQp5CPm90s04lNYhcF_7tZR4p5Se7hnnPuzamqswYvmgaL84thWN7dLQgmdEFJ11GKv1RHpOlETVvaHXx6f61OU9ricvoCtfyoer0JFkb0M4L1Jvt_gIYw5RhG5EJEywni-rkG57zxMGX0W-3qlJX2o3_x0xrdh_j3CdAvMDnEPeAntBxLFb0p6MabERLa-bxBl-EpotVU7zZQDG9CIaST6tCpMcHpx31cPVwu74cf9fXt1Wq4uK4NbUWuW44pY4RwqnCrOACjAKIRhICz1mFOmOKKEWtEg8ti5Vc61lutWWnQWtPjajXr2qC28jH6Pyo-y6C8fAdCXEsV835YCc5oioUr2oYxY_oGAHhnueu01X1ftL7PWo8xlN1Tltuy2VTGl6THHSGYUVa66NxlYkgpgvvv2mC5j03Oscl9bPIjtsL6NrN8Mf3EwKLnoqdvCKmVdA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806220434</pqid></control><display><type>article</type><title>Model Predictive Control for Energy-efficient Yaw-stabilizing Torque Vectoring in Electric Vehicles with Four In-wheel Motors</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kim, Sang Hyuk ; Kim, Kwang-Ki K.</creator><creatorcontrib>Kim, Sang Hyuk ; Kim, Kwang-Ki K.</creatorcontrib><description>This paper considers the problem of stabilizing and energy-efficient torque vectoring for electric vehicles with four independent in-wheel motors. In electric vehicles with four in-wheel motors, four electric motors are separately attached to the four wheels without an extra drive shaft. The mechanical and structural nature enables reduction of energy loss during power transmission and securing extra interior space. In addition, independent control of wheel torques can provide better yaw motion stability and improved energy efficiency. This paper proposes two model predictive control (MPC) methods for stability-constrained energy-efficient torque vectoring of four in-wheel motor electric vehicles. For the adaptive weighting factors of multiple objective functions of reference tracking and energy saving, we use exponential functions that vary with the lateral motion and steering input. Depending on the optimal control problem formulation with different dynamical system equations and constraints, the associated predictive controller can be represented as either a linear parameter-varying MPC (LPV-MPC) or nonlinear MPC (NMPC). For LPV-MPC, longitudinal and lateral motions are decoupled, whereas the coupled dynamics of the two-track model are exploited in NMPC. For comparisons and demonstrations of LPV-MPC and NMPC in the MPC of torque vectoring, three driving scenarios are simulated with a high-fidelity vehicle simulation solution, CarMaker (IPG Automotive). In comparison with the built-in IPG driver implemented in CarMaker, we demonstrate fuel efficiency improvements of over 2-3 % on average with guaranteed yaw stability.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3266330</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Automobile industry ; Automobiles ; Constraints ; Electric motors ; Electric vehicles ; Energy efficiency ; EV range extension ; Exponential functions ; Four in-wheel motor electric vehicles ; Fuel efficiency ; Linear parameter-varying model predictive control ; Mechanical drives ; Motion stability ; Nonlinear model predictive control ; Optimal control ; Power transmission ; Predictive control ; Shafts (machine elements) ; Stability analysis ; Steering ; Torque ; Torque vectoring ; Wheelchairs ; Yaw ; Yaw stability</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-5703442273a05a7ee43ee91922efddf0724a7a42dc910169109648dbb42efbbb3</cites><orcidid>0000-0002-0499-7253</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10098798$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,27638,27929,27930,54938</link.rule.ids></links><search><creatorcontrib>Kim, Sang Hyuk</creatorcontrib><creatorcontrib>Kim, Kwang-Ki K.</creatorcontrib><title>Model Predictive Control for Energy-efficient Yaw-stabilizing Torque Vectoring in Electric Vehicles with Four In-wheel Motors</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper considers the problem of stabilizing and energy-efficient torque vectoring for electric vehicles with four independent in-wheel motors. In electric vehicles with four in-wheel motors, four electric motors are separately attached to the four wheels without an extra drive shaft. The mechanical and structural nature enables reduction of energy loss during power transmission and securing extra interior space. In addition, independent control of wheel torques can provide better yaw motion stability and improved energy efficiency. This paper proposes two model predictive control (MPC) methods for stability-constrained energy-efficient torque vectoring of four in-wheel motor electric vehicles. For the adaptive weighting factors of multiple objective functions of reference tracking and energy saving, we use exponential functions that vary with the lateral motion and steering input. Depending on the optimal control problem formulation with different dynamical system equations and constraints, the associated predictive controller can be represented as either a linear parameter-varying MPC (LPV-MPC) or nonlinear MPC (NMPC). For LPV-MPC, longitudinal and lateral motions are decoupled, whereas the coupled dynamics of the two-track model are exploited in NMPC. For comparisons and demonstrations of LPV-MPC and NMPC in the MPC of torque vectoring, three driving scenarios are simulated with a high-fidelity vehicle simulation solution, CarMaker (IPG Automotive). In comparison with the built-in IPG driver implemented in CarMaker, we demonstrate fuel efficiency improvements of over 2-3 % on average with guaranteed yaw stability.</description><subject>Automobile industry</subject><subject>Automobiles</subject><subject>Constraints</subject><subject>Electric motors</subject><subject>Electric vehicles</subject><subject>Energy efficiency</subject><subject>EV range extension</subject><subject>Exponential functions</subject><subject>Four in-wheel motor electric vehicles</subject><subject>Fuel efficiency</subject><subject>Linear parameter-varying model predictive control</subject><subject>Mechanical drives</subject><subject>Motion stability</subject><subject>Nonlinear model predictive control</subject><subject>Optimal control</subject><subject>Power transmission</subject><subject>Predictive control</subject><subject>Shafts (machine elements)</subject><subject>Stability analysis</subject><subject>Steering</subject><subject>Torque</subject><subject>Torque vectoring</subject><subject>Wheelchairs</subject><subject>Yaw</subject><subject>Yaw stability</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1LHDEUHYpCRf0F9iHQ51kzSWYyeZRhtQuKBbXQp5CPm90s04lNYhcF_7tZR4p5Se7hnnPuzamqswYvmgaL84thWN7dLQgmdEFJ11GKv1RHpOlETVvaHXx6f61OU9ricvoCtfyoer0JFkb0M4L1Jvt_gIYw5RhG5EJEywni-rkG57zxMGX0W-3qlJX2o3_x0xrdh_j3CdAvMDnEPeAntBxLFb0p6MabERLa-bxBl-EpotVU7zZQDG9CIaST6tCpMcHpx31cPVwu74cf9fXt1Wq4uK4NbUWuW44pY4RwqnCrOACjAKIRhICz1mFOmOKKEWtEg8ti5Vc61lutWWnQWtPjajXr2qC28jH6Pyo-y6C8fAdCXEsV835YCc5oioUr2oYxY_oGAHhnueu01X1ftL7PWo8xlN1Tltuy2VTGl6THHSGYUVa66NxlYkgpgvvv2mC5j03Oscl9bPIjtsL6NrN8Mf3EwKLnoqdvCKmVdA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Kim, Sang Hyuk</creator><creator>Kim, Kwang-Ki K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0499-7253</orcidid></search><sort><creationdate>20230101</creationdate><title>Model Predictive Control for Energy-efficient Yaw-stabilizing Torque Vectoring in Electric Vehicles with Four In-wheel Motors</title><author>Kim, Sang Hyuk ; Kim, Kwang-Ki K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5703442273a05a7ee43ee91922efddf0724a7a42dc910169109648dbb42efbbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automobile industry</topic><topic>Automobiles</topic><topic>Constraints</topic><topic>Electric motors</topic><topic>Electric vehicles</topic><topic>Energy efficiency</topic><topic>EV range extension</topic><topic>Exponential functions</topic><topic>Four in-wheel motor electric vehicles</topic><topic>Fuel efficiency</topic><topic>Linear parameter-varying model predictive control</topic><topic>Mechanical drives</topic><topic>Motion stability</topic><topic>Nonlinear model predictive control</topic><topic>Optimal control</topic><topic>Power transmission</topic><topic>Predictive control</topic><topic>Shafts (machine elements)</topic><topic>Stability analysis</topic><topic>Steering</topic><topic>Torque</topic><topic>Torque vectoring</topic><topic>Wheelchairs</topic><topic>Yaw</topic><topic>Yaw stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Sang Hyuk</creatorcontrib><creatorcontrib>Kim, Kwang-Ki K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Sang Hyuk</au><au>Kim, Kwang-Ki K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model Predictive Control for Energy-efficient Yaw-stabilizing Torque Vectoring in Electric Vehicles with Four In-wheel Motors</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper considers the problem of stabilizing and energy-efficient torque vectoring for electric vehicles with four independent in-wheel motors. In electric vehicles with four in-wheel motors, four electric motors are separately attached to the four wheels without an extra drive shaft. The mechanical and structural nature enables reduction of energy loss during power transmission and securing extra interior space. In addition, independent control of wheel torques can provide better yaw motion stability and improved energy efficiency. This paper proposes two model predictive control (MPC) methods for stability-constrained energy-efficient torque vectoring of four in-wheel motor electric vehicles. For the adaptive weighting factors of multiple objective functions of reference tracking and energy saving, we use exponential functions that vary with the lateral motion and steering input. Depending on the optimal control problem formulation with different dynamical system equations and constraints, the associated predictive controller can be represented as either a linear parameter-varying MPC (LPV-MPC) or nonlinear MPC (NMPC). For LPV-MPC, longitudinal and lateral motions are decoupled, whereas the coupled dynamics of the two-track model are exploited in NMPC. For comparisons and demonstrations of LPV-MPC and NMPC in the MPC of torque vectoring, three driving scenarios are simulated with a high-fidelity vehicle simulation solution, CarMaker (IPG Automotive). In comparison with the built-in IPG driver implemented in CarMaker, we demonstrate fuel efficiency improvements of over 2-3 % on average with guaranteed yaw stability.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3266330</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0499-7253</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2023_3266330
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Automobile industry
Automobiles
Constraints
Electric motors
Electric vehicles
Energy efficiency
EV range extension
Exponential functions
Four in-wheel motor electric vehicles
Fuel efficiency
Linear parameter-varying model predictive control
Mechanical drives
Motion stability
Nonlinear model predictive control
Optimal control
Power transmission
Predictive control
Shafts (machine elements)
Stability analysis
Steering
Torque
Torque vectoring
Wheelchairs
Yaw
Yaw stability
title Model Predictive Control for Energy-efficient Yaw-stabilizing Torque Vectoring in Electric Vehicles with Four In-wheel Motors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T15%3A44%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20Predictive%20Control%20for%20Energy-efficient%20Yaw-stabilizing%20Torque%20Vectoring%20in%20Electric%20Vehicles%20with%20Four%20In-wheel%20Motors&rft.jtitle=IEEE%20access&rft.au=Kim,%20Sang%20Hyuk&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3266330&rft_dat=%3Cproquest_cross%3E2806220434%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806220434&rft_id=info:pmid/&rft_ieee_id=10098798&rft_doaj_id=oai_doaj_org_article_efcb309f22ec44cc81eee76d7f6bdb88&rfr_iscdi=true