Blockchain-based Swarm Learning for the mitigation of Gradient Leakage in Federated Learning
Federated Learning (FL) is a machine learning technique, where collaborative and distributed learning is performed, while the private data reside locally on the client. Rather than the data, only gradients are shared among all collaborative nodes with the help of a central server. To ensure the data...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Madni, Hussain Ahmad Umer, Rao Muhammad Foresti, Gian Luca |
description | Federated Learning (FL) is a machine learning technique, where collaborative and distributed learning is performed, while the private data reside locally on the client. Rather than the data, only gradients are shared among all collaborative nodes with the help of a central server. To ensure the data privacy, the gradients are prone to the deformation, or the representation is perturbed before sharing, ultimately reducing the performance of the model. Recent studies show that the original data can still be recovered using latent space (i.e., gradient leakage problem) by Generative Adversarial Network and different optimization algorithms such as Bayesian and Covariance Matrix Adaptation Evolution Strategy. To address the issues of data privacy and gradient leakage, in this paper, we train deep neural networks by exploiting the blockchain-based Swarm Learning (SL) framework. In the SL scheme, instead of sharing perturbed or noisy gradients to the central server, we share the gradients among authenticated (i.e., blockchain-based smart contract) training nodes. To demonstrate the effectiveness of the SL approach, we evaluate the proposed approach using the standard CIFAR10 and MNIST benchmark datasets and compare it with the other existing methods. |
doi_str_mv | 10.1109/ACCESS.2023.3246126 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3246126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10047894</ieee_id><doaj_id>oai_doaj_org_article_2194be699d55436bba561374ff47ec59</doaj_id><sourcerecordid>2779670625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-f747243fbad7eaaefddeb391294f33a1ae8e64d53280c2b13d684e4898e700523</originalsourceid><addsrcrecordid>eNpNkVtLxDAQhYsoKOov0IeAz11zT_OoizdY8GH1TQjTZrKbvTSaVsR_b9eqOC8zDOc7M3CK4ozRCWPUXl5Npzfz-YRTLiaCS8243iuOONO2FEro_X_zYXHadSs6VDWslDkqXq43qVk3S4htWUOHnsw_IG_JDCG3sV2QkDLpl0i2sY8L6GNqSQrkLoOP2PY73RoWSGJLbtFjhn6w-IVPioMAmw5Pf_px8Xx78zS9L2ePdw_Tq1nZSGr7MhhpuBShBm8QAIP3WAvLuJVBCGCAFWrpleAVbXjNhNeVRFnZCg2liovj4mH09QlW7jXHLeRPlyC670XKCwe5j80GHWdW1qit9UpJoesalGbCyBCkwUbZweti9HrN6e0du96t0ntuh_cdN8ZqQzVXg0qMqianrssY_q4y6napuDEVt0vF_aQyUOcjFRHxH0GlqawUX5kQh8k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779670625</pqid></control><display><type>article</type><title>Blockchain-based Swarm Learning for the mitigation of Gradient Leakage in Federated Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Madni, Hussain Ahmad ; Umer, Rao Muhammad ; Foresti, Gian Luca</creator><creatorcontrib>Madni, Hussain Ahmad ; Umer, Rao Muhammad ; Foresti, Gian Luca</creatorcontrib><description>Federated Learning (FL) is a machine learning technique, where collaborative and distributed learning is performed, while the private data reside locally on the client. Rather than the data, only gradients are shared among all collaborative nodes with the help of a central server. To ensure the data privacy, the gradients are prone to the deformation, or the representation is perturbed before sharing, ultimately reducing the performance of the model. Recent studies show that the original data can still be recovered using latent space (i.e., gradient leakage problem) by Generative Adversarial Network and different optimization algorithms such as Bayesian and Covariance Matrix Adaptation Evolution Strategy. To address the issues of data privacy and gradient leakage, in this paper, we train deep neural networks by exploiting the blockchain-based Swarm Learning (SL) framework. In the SL scheme, instead of sharing perturbed or noisy gradients to the central server, we share the gradients among authenticated (i.e., blockchain-based smart contract) training nodes. To demonstrate the effectiveness of the SL approach, we evaluate the proposed approach using the standard CIFAR10 and MNIST benchmark datasets and compare it with the other existing methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3246126</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Blockchain ; Blockchains ; Collaboration ; Covariance matrix ; Cryptography ; Data models ; Data Privacy ; Federated learning ; Generative adversarial networks ; Gradient Leakage ; Leakage ; Machine learning ; Model Privacy ; Nodes ; Optimization ; Peer-to-peer computing ; Privacy ; Servers ; Smart contracts ; Swarm Learning ; Training</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-f747243fbad7eaaefddeb391294f33a1ae8e64d53280c2b13d684e4898e700523</citedby><cites>FETCH-LOGICAL-c409t-f747243fbad7eaaefddeb391294f33a1ae8e64d53280c2b13d684e4898e700523</cites><orcidid>0000-0002-8425-6892 ; 0000-0003-1227-524X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10047894$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,27612,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Madni, Hussain Ahmad</creatorcontrib><creatorcontrib>Umer, Rao Muhammad</creatorcontrib><creatorcontrib>Foresti, Gian Luca</creatorcontrib><title>Blockchain-based Swarm Learning for the mitigation of Gradient Leakage in Federated Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>Federated Learning (FL) is a machine learning technique, where collaborative and distributed learning is performed, while the private data reside locally on the client. Rather than the data, only gradients are shared among all collaborative nodes with the help of a central server. To ensure the data privacy, the gradients are prone to the deformation, or the representation is perturbed before sharing, ultimately reducing the performance of the model. Recent studies show that the original data can still be recovered using latent space (i.e., gradient leakage problem) by Generative Adversarial Network and different optimization algorithms such as Bayesian and Covariance Matrix Adaptation Evolution Strategy. To address the issues of data privacy and gradient leakage, in this paper, we train deep neural networks by exploiting the blockchain-based Swarm Learning (SL) framework. In the SL scheme, instead of sharing perturbed or noisy gradients to the central server, we share the gradients among authenticated (i.e., blockchain-based smart contract) training nodes. To demonstrate the effectiveness of the SL approach, we evaluate the proposed approach using the standard CIFAR10 and MNIST benchmark datasets and compare it with the other existing methods.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Blockchain</subject><subject>Blockchains</subject><subject>Collaboration</subject><subject>Covariance matrix</subject><subject>Cryptography</subject><subject>Data models</subject><subject>Data Privacy</subject><subject>Federated learning</subject><subject>Generative adversarial networks</subject><subject>Gradient Leakage</subject><subject>Leakage</subject><subject>Machine learning</subject><subject>Model Privacy</subject><subject>Nodes</subject><subject>Optimization</subject><subject>Peer-to-peer computing</subject><subject>Privacy</subject><subject>Servers</subject><subject>Smart contracts</subject><subject>Swarm Learning</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtLxDAQhYsoKOov0IeAz11zT_OoizdY8GH1TQjTZrKbvTSaVsR_b9eqOC8zDOc7M3CK4ozRCWPUXl5Npzfz-YRTLiaCS8243iuOONO2FEro_X_zYXHadSs6VDWslDkqXq43qVk3S4htWUOHnsw_IG_JDCG3sV2QkDLpl0i2sY8L6GNqSQrkLoOP2PY73RoWSGJLbtFjhn6w-IVPioMAmw5Pf_px8Xx78zS9L2ePdw_Tq1nZSGr7MhhpuBShBm8QAIP3WAvLuJVBCGCAFWrpleAVbXjNhNeVRFnZCg2liovj4mH09QlW7jXHLeRPlyC670XKCwe5j80GHWdW1qit9UpJoesalGbCyBCkwUbZweti9HrN6e0du96t0ntuh_cdN8ZqQzVXg0qMqianrssY_q4y6napuDEVt0vF_aQyUOcjFRHxH0GlqawUX5kQh8k</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Madni, Hussain Ahmad</creator><creator>Umer, Rao Muhammad</creator><creator>Foresti, Gian Luca</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8425-6892</orcidid><orcidid>https://orcid.org/0000-0003-1227-524X</orcidid></search><sort><creationdate>20230101</creationdate><title>Blockchain-based Swarm Learning for the mitigation of Gradient Leakage in Federated Learning</title><author>Madni, Hussain Ahmad ; Umer, Rao Muhammad ; Foresti, Gian Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-f747243fbad7eaaefddeb391294f33a1ae8e64d53280c2b13d684e4898e700523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Blockchain</topic><topic>Blockchains</topic><topic>Collaboration</topic><topic>Covariance matrix</topic><topic>Cryptography</topic><topic>Data models</topic><topic>Data Privacy</topic><topic>Federated learning</topic><topic>Generative adversarial networks</topic><topic>Gradient Leakage</topic><topic>Leakage</topic><topic>Machine learning</topic><topic>Model Privacy</topic><topic>Nodes</topic><topic>Optimization</topic><topic>Peer-to-peer computing</topic><topic>Privacy</topic><topic>Servers</topic><topic>Smart contracts</topic><topic>Swarm Learning</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madni, Hussain Ahmad</creatorcontrib><creatorcontrib>Umer, Rao Muhammad</creatorcontrib><creatorcontrib>Foresti, Gian Luca</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madni, Hussain Ahmad</au><au>Umer, Rao Muhammad</au><au>Foresti, Gian Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blockchain-based Swarm Learning for the mitigation of Gradient Leakage in Federated Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Federated Learning (FL) is a machine learning technique, where collaborative and distributed learning is performed, while the private data reside locally on the client. Rather than the data, only gradients are shared among all collaborative nodes with the help of a central server. To ensure the data privacy, the gradients are prone to the deformation, or the representation is perturbed before sharing, ultimately reducing the performance of the model. Recent studies show that the original data can still be recovered using latent space (i.e., gradient leakage problem) by Generative Adversarial Network and different optimization algorithms such as Bayesian and Covariance Matrix Adaptation Evolution Strategy. To address the issues of data privacy and gradient leakage, in this paper, we train deep neural networks by exploiting the blockchain-based Swarm Learning (SL) framework. In the SL scheme, instead of sharing perturbed or noisy gradients to the central server, we share the gradients among authenticated (i.e., blockchain-based smart contract) training nodes. To demonstrate the effectiveness of the SL approach, we evaluate the proposed approach using the standard CIFAR10 and MNIST benchmark datasets and compare it with the other existing methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3246126</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8425-6892</orcidid><orcidid>https://orcid.org/0000-0003-1227-524X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2023_3246126 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Artificial neural networks Blockchain Blockchains Collaboration Covariance matrix Cryptography Data models Data Privacy Federated learning Generative adversarial networks Gradient Leakage Leakage Machine learning Model Privacy Nodes Optimization Peer-to-peer computing Privacy Servers Smart contracts Swarm Learning Training |
title | Blockchain-based Swarm Learning for the mitigation of Gradient Leakage in Federated Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A24%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blockchain-based%20Swarm%20Learning%20for%20the%20mitigation%20of%20Gradient%20Leakage%20in%20Federated%20Learning&rft.jtitle=IEEE%20access&rft.au=Madni,%20Hussain%20Ahmad&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3246126&rft_dat=%3Cproquest_cross%3E2779670625%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779670625&rft_id=info:pmid/&rft_ieee_id=10047894&rft_doaj_id=oai_doaj_org_article_2194be699d55436bba561374ff47ec59&rfr_iscdi=true |