Blockchain-based Swarm Learning for the mitigation of Gradient Leakage in Federated Learning

Federated Learning (FL) is a machine learning technique, where collaborative and distributed learning is performed, while the private data reside locally on the client. Rather than the data, only gradients are shared among all collaborative nodes with the help of a central server. To ensure the data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Madni, Hussain Ahmad, Umer, Rao Muhammad, Foresti, Gian Luca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Madni, Hussain Ahmad
Umer, Rao Muhammad
Foresti, Gian Luca
description Federated Learning (FL) is a machine learning technique, where collaborative and distributed learning is performed, while the private data reside locally on the client. Rather than the data, only gradients are shared among all collaborative nodes with the help of a central server. To ensure the data privacy, the gradients are prone to the deformation, or the representation is perturbed before sharing, ultimately reducing the performance of the model. Recent studies show that the original data can still be recovered using latent space (i.e., gradient leakage problem) by Generative Adversarial Network and different optimization algorithms such as Bayesian and Covariance Matrix Adaptation Evolution Strategy. To address the issues of data privacy and gradient leakage, in this paper, we train deep neural networks by exploiting the blockchain-based Swarm Learning (SL) framework. In the SL scheme, instead of sharing perturbed or noisy gradients to the central server, we share the gradients among authenticated (i.e., blockchain-based smart contract) training nodes. To demonstrate the effectiveness of the SL approach, we evaluate the proposed approach using the standard CIFAR10 and MNIST benchmark datasets and compare it with the other existing methods.
doi_str_mv 10.1109/ACCESS.2023.3246126
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3246126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10047894</ieee_id><doaj_id>oai_doaj_org_article_2194be699d55436bba561374ff47ec59</doaj_id><sourcerecordid>2779670625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-f747243fbad7eaaefddeb391294f33a1ae8e64d53280c2b13d684e4898e700523</originalsourceid><addsrcrecordid>eNpNkVtLxDAQhYsoKOov0IeAz11zT_OoizdY8GH1TQjTZrKbvTSaVsR_b9eqOC8zDOc7M3CK4ozRCWPUXl5Npzfz-YRTLiaCS8243iuOONO2FEro_X_zYXHadSs6VDWslDkqXq43qVk3S4htWUOHnsw_IG_JDCG3sV2QkDLpl0i2sY8L6GNqSQrkLoOP2PY73RoWSGJLbtFjhn6w-IVPioMAmw5Pf_px8Xx78zS9L2ePdw_Tq1nZSGr7MhhpuBShBm8QAIP3WAvLuJVBCGCAFWrpleAVbXjNhNeVRFnZCg2liovj4mH09QlW7jXHLeRPlyC670XKCwe5j80GHWdW1qit9UpJoesalGbCyBCkwUbZweti9HrN6e0du96t0ntuh_cdN8ZqQzVXg0qMqianrssY_q4y6napuDEVt0vF_aQyUOcjFRHxH0GlqawUX5kQh8k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779670625</pqid></control><display><type>article</type><title>Blockchain-based Swarm Learning for the mitigation of Gradient Leakage in Federated Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Madni, Hussain Ahmad ; Umer, Rao Muhammad ; Foresti, Gian Luca</creator><creatorcontrib>Madni, Hussain Ahmad ; Umer, Rao Muhammad ; Foresti, Gian Luca</creatorcontrib><description>Federated Learning (FL) is a machine learning technique, where collaborative and distributed learning is performed, while the private data reside locally on the client. Rather than the data, only gradients are shared among all collaborative nodes with the help of a central server. To ensure the data privacy, the gradients are prone to the deformation, or the representation is perturbed before sharing, ultimately reducing the performance of the model. Recent studies show that the original data can still be recovered using latent space (i.e., gradient leakage problem) by Generative Adversarial Network and different optimization algorithms such as Bayesian and Covariance Matrix Adaptation Evolution Strategy. To address the issues of data privacy and gradient leakage, in this paper, we train deep neural networks by exploiting the blockchain-based Swarm Learning (SL) framework. In the SL scheme, instead of sharing perturbed or noisy gradients to the central server, we share the gradients among authenticated (i.e., blockchain-based smart contract) training nodes. To demonstrate the effectiveness of the SL approach, we evaluate the proposed approach using the standard CIFAR10 and MNIST benchmark datasets and compare it with the other existing methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3246126</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Blockchain ; Blockchains ; Collaboration ; Covariance matrix ; Cryptography ; Data models ; Data Privacy ; Federated learning ; Generative adversarial networks ; Gradient Leakage ; Leakage ; Machine learning ; Model Privacy ; Nodes ; Optimization ; Peer-to-peer computing ; Privacy ; Servers ; Smart contracts ; Swarm Learning ; Training</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-f747243fbad7eaaefddeb391294f33a1ae8e64d53280c2b13d684e4898e700523</citedby><cites>FETCH-LOGICAL-c409t-f747243fbad7eaaefddeb391294f33a1ae8e64d53280c2b13d684e4898e700523</cites><orcidid>0000-0002-8425-6892 ; 0000-0003-1227-524X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10047894$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,27612,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Madni, Hussain Ahmad</creatorcontrib><creatorcontrib>Umer, Rao Muhammad</creatorcontrib><creatorcontrib>Foresti, Gian Luca</creatorcontrib><title>Blockchain-based Swarm Learning for the mitigation of Gradient Leakage in Federated Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>Federated Learning (FL) is a machine learning technique, where collaborative and distributed learning is performed, while the private data reside locally on the client. Rather than the data, only gradients are shared among all collaborative nodes with the help of a central server. To ensure the data privacy, the gradients are prone to the deformation, or the representation is perturbed before sharing, ultimately reducing the performance of the model. Recent studies show that the original data can still be recovered using latent space (i.e., gradient leakage problem) by Generative Adversarial Network and different optimization algorithms such as Bayesian and Covariance Matrix Adaptation Evolution Strategy. To address the issues of data privacy and gradient leakage, in this paper, we train deep neural networks by exploiting the blockchain-based Swarm Learning (SL) framework. In the SL scheme, instead of sharing perturbed or noisy gradients to the central server, we share the gradients among authenticated (i.e., blockchain-based smart contract) training nodes. To demonstrate the effectiveness of the SL approach, we evaluate the proposed approach using the standard CIFAR10 and MNIST benchmark datasets and compare it with the other existing methods.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Blockchain</subject><subject>Blockchains</subject><subject>Collaboration</subject><subject>Covariance matrix</subject><subject>Cryptography</subject><subject>Data models</subject><subject>Data Privacy</subject><subject>Federated learning</subject><subject>Generative adversarial networks</subject><subject>Gradient Leakage</subject><subject>Leakage</subject><subject>Machine learning</subject><subject>Model Privacy</subject><subject>Nodes</subject><subject>Optimization</subject><subject>Peer-to-peer computing</subject><subject>Privacy</subject><subject>Servers</subject><subject>Smart contracts</subject><subject>Swarm Learning</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtLxDAQhYsoKOov0IeAz11zT_OoizdY8GH1TQjTZrKbvTSaVsR_b9eqOC8zDOc7M3CK4ozRCWPUXl5Npzfz-YRTLiaCS8243iuOONO2FEro_X_zYXHadSs6VDWslDkqXq43qVk3S4htWUOHnsw_IG_JDCG3sV2QkDLpl0i2sY8L6GNqSQrkLoOP2PY73RoWSGJLbtFjhn6w-IVPioMAmw5Pf_px8Xx78zS9L2ePdw_Tq1nZSGr7MhhpuBShBm8QAIP3WAvLuJVBCGCAFWrpleAVbXjNhNeVRFnZCg2liovj4mH09QlW7jXHLeRPlyC670XKCwe5j80GHWdW1qit9UpJoesalGbCyBCkwUbZweti9HrN6e0du96t0ntuh_cdN8ZqQzVXg0qMqianrssY_q4y6napuDEVt0vF_aQyUOcjFRHxH0GlqawUX5kQh8k</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Madni, Hussain Ahmad</creator><creator>Umer, Rao Muhammad</creator><creator>Foresti, Gian Luca</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8425-6892</orcidid><orcidid>https://orcid.org/0000-0003-1227-524X</orcidid></search><sort><creationdate>20230101</creationdate><title>Blockchain-based Swarm Learning for the mitigation of Gradient Leakage in Federated Learning</title><author>Madni, Hussain Ahmad ; Umer, Rao Muhammad ; Foresti, Gian Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-f747243fbad7eaaefddeb391294f33a1ae8e64d53280c2b13d684e4898e700523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Blockchain</topic><topic>Blockchains</topic><topic>Collaboration</topic><topic>Covariance matrix</topic><topic>Cryptography</topic><topic>Data models</topic><topic>Data Privacy</topic><topic>Federated learning</topic><topic>Generative adversarial networks</topic><topic>Gradient Leakage</topic><topic>Leakage</topic><topic>Machine learning</topic><topic>Model Privacy</topic><topic>Nodes</topic><topic>Optimization</topic><topic>Peer-to-peer computing</topic><topic>Privacy</topic><topic>Servers</topic><topic>Smart contracts</topic><topic>Swarm Learning</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madni, Hussain Ahmad</creatorcontrib><creatorcontrib>Umer, Rao Muhammad</creatorcontrib><creatorcontrib>Foresti, Gian Luca</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madni, Hussain Ahmad</au><au>Umer, Rao Muhammad</au><au>Foresti, Gian Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blockchain-based Swarm Learning for the mitigation of Gradient Leakage in Federated Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Federated Learning (FL) is a machine learning technique, where collaborative and distributed learning is performed, while the private data reside locally on the client. Rather than the data, only gradients are shared among all collaborative nodes with the help of a central server. To ensure the data privacy, the gradients are prone to the deformation, or the representation is perturbed before sharing, ultimately reducing the performance of the model. Recent studies show that the original data can still be recovered using latent space (i.e., gradient leakage problem) by Generative Adversarial Network and different optimization algorithms such as Bayesian and Covariance Matrix Adaptation Evolution Strategy. To address the issues of data privacy and gradient leakage, in this paper, we train deep neural networks by exploiting the blockchain-based Swarm Learning (SL) framework. In the SL scheme, instead of sharing perturbed or noisy gradients to the central server, we share the gradients among authenticated (i.e., blockchain-based smart contract) training nodes. To demonstrate the effectiveness of the SL approach, we evaluate the proposed approach using the standard CIFAR10 and MNIST benchmark datasets and compare it with the other existing methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3246126</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8425-6892</orcidid><orcidid>https://orcid.org/0000-0003-1227-524X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2023_3246126
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Artificial neural networks
Blockchain
Blockchains
Collaboration
Covariance matrix
Cryptography
Data models
Data Privacy
Federated learning
Generative adversarial networks
Gradient Leakage
Leakage
Machine learning
Model Privacy
Nodes
Optimization
Peer-to-peer computing
Privacy
Servers
Smart contracts
Swarm Learning
Training
title Blockchain-based Swarm Learning for the mitigation of Gradient Leakage in Federated Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A24%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blockchain-based%20Swarm%20Learning%20for%20the%20mitigation%20of%20Gradient%20Leakage%20in%20Federated%20Learning&rft.jtitle=IEEE%20access&rft.au=Madni,%20Hussain%20Ahmad&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3246126&rft_dat=%3Cproquest_cross%3E2779670625%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779670625&rft_id=info:pmid/&rft_ieee_id=10047894&rft_doaj_id=oai_doaj_org_article_2194be699d55436bba561374ff47ec59&rfr_iscdi=true