FIAS3: Frame Importance-assisted Sparse Subset Selection to Summarize Wireless Capsule Endoscopy Videos
Wireless capsule endoscopy (WCE) is a recently developed tool that allows for the painless and non-invasive examination of the entire gastrointestinal (GI) tract. The microcamera captures a large number of redundant frames for each WCE examination such that a video summarization technique is needed...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Xie, Weijie Chen, Zefeiyun Li, Qingyuan Ma, Qingfei Wang, Yusi Liu, Tianbao Fang, Yuxin Zhao, Zhanpeng Liu, Side Yang, Wei |
description | Wireless capsule endoscopy (WCE) is a recently developed tool that allows for the painless and non-invasive examination of the entire gastrointestinal (GI) tract. The microcamera captures a large number of redundant frames for each WCE examination such that a video summarization technique is needed to assist in diagnosis. However, prevalent methods of summarizing WCE videos focus only on the representativeness of the frames owing to a lack of high-level information on their importance. This paper develops a frame importance-assisted sparse subset selection model, called FIAS3, to integrate the high-level frame importance from networks into a sparse subset selection model. The FIAS3 is optimized under three constraints: 1) a frame importance matrix to help pay more attention to important frames, 2) a sparsity constraint to make video summaries more compact, and 3) a similarity-inhibiting constraint to reduce redundancy. The results of experiments on a public dataset demonstrated that our FIAS3 outperforms other methods of summarizing WCE videos. Specifically, its coverage and video reconstruction error were 92% and 0.143, respectively, at a 90% compression ratio, recording respective at least 16.9% and 0.031 improvements over other methods. The results of generalization experiments showed that FIAS3 also achieves competitive results on private datasets. |
doi_str_mv | 10.1109/ACCESS.2023.3240999 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3240999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10032547</ieee_id><doaj_id>oai_doaj_org_article_71823ad81b564464b7fe88aec4e79260</doaj_id><sourcerecordid>2774333681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-dd00f5abeeab2f6237ff732adf31d175402e10f749a712429369af5293a7e9fd3</originalsourceid><addsrcrecordid>eNpNUU2L2zAQNaWFLtv9Be1B0LNTSSNbVm_BJG1goQf34yjG1mhRSCJXcg7bX19tvZSdyxvezHsz8KrqveAbIbj5tO373TBsJJewAam4MeZVdSNFa2pooH39on9b3eV85KW6QjX6pnrYH7YDfGb7hGdih_Mc04KXiWrMOeSFHBtmTJnYcB0zLWygE01LiBe2xMKdz5jCH2K_QiqDnFmPc76eiO0uLuYpzo_sZ3AU87vqjcdTprtnvK1-7Hff-6_1_bcvh357X0_QmKV2jnPf4EiEo_StBO29BonOg3BCN4pLEtxrZVALqaSB1qBvCqIm4x3cVofV10U82jmF8uCjjRjsPyKmB4tpCdOJrBadBHSdGJtWqVaN2lPXIU2KtJEtL14fV685xd9Xyos9xmu6lPet1FoBQNuJsgXr1pRizon8_6uC26eA7BqQfQrIPgdUVB9WVSCiFwoOslEa_gKZEIwE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774333681</pqid></control><display><type>article</type><title>FIAS3: Frame Importance-assisted Sparse Subset Selection to Summarize Wireless Capsule Endoscopy Videos</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Xie, Weijie ; Chen, Zefeiyun ; Li, Qingyuan ; Ma, Qingfei ; Wang, Yusi ; Liu, Tianbao ; Fang, Yuxin ; Zhao, Zhanpeng ; Liu, Side ; Yang, Wei</creator><creatorcontrib>Xie, Weijie ; Chen, Zefeiyun ; Li, Qingyuan ; Ma, Qingfei ; Wang, Yusi ; Liu, Tianbao ; Fang, Yuxin ; Zhao, Zhanpeng ; Liu, Side ; Yang, Wei</creatorcontrib><description>Wireless capsule endoscopy (WCE) is a recently developed tool that allows for the painless and non-invasive examination of the entire gastrointestinal (GI) tract. The microcamera captures a large number of redundant frames for each WCE examination such that a video summarization technique is needed to assist in diagnosis. However, prevalent methods of summarizing WCE videos focus only on the representativeness of the frames owing to a lack of high-level information on their importance. This paper develops a frame importance-assisted sparse subset selection model, called FIAS3, to integrate the high-level frame importance from networks into a sparse subset selection model. The FIAS3 is optimized under three constraints: 1) a frame importance matrix to help pay more attention to important frames, 2) a sparsity constraint to make video summaries more compact, and 3) a similarity-inhibiting constraint to reduce redundancy. The results of experiments on a public dataset demonstrated that our FIAS3 outperforms other methods of summarizing WCE videos. Specifically, its coverage and video reconstruction error were 92% and 0.143, respectively, at a 90% compression ratio, recording respective at least 16.9% and 0.031 improvements over other methods. The results of generalization experiments showed that FIAS3 also achieves competitive results on private datasets.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3240999</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Compression ratio ; Computer-aided diagnosis ; Datasets ; Deep learning ; Endoscopy ; Feature extraction ; Frames (data processing) ; Gastroenterology ; Keyframe extraction ; Lesions ; Motion segmentation ; Redundancy ; Sparse matrices ; Video data ; Video summarization ; Videos ; Wireless capsule endoscopy (WCE) ; Wireless communication</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-dd00f5abeeab2f6237ff732adf31d175402e10f749a712429369af5293a7e9fd3</cites><orcidid>0000-0002-2161-3231 ; 0000-0002-4024-3619</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10032547$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,27614,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Xie, Weijie</creatorcontrib><creatorcontrib>Chen, Zefeiyun</creatorcontrib><creatorcontrib>Li, Qingyuan</creatorcontrib><creatorcontrib>Ma, Qingfei</creatorcontrib><creatorcontrib>Wang, Yusi</creatorcontrib><creatorcontrib>Liu, Tianbao</creatorcontrib><creatorcontrib>Fang, Yuxin</creatorcontrib><creatorcontrib>Zhao, Zhanpeng</creatorcontrib><creatorcontrib>Liu, Side</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><title>FIAS3: Frame Importance-assisted Sparse Subset Selection to Summarize Wireless Capsule Endoscopy Videos</title><title>IEEE access</title><addtitle>Access</addtitle><description>Wireless capsule endoscopy (WCE) is a recently developed tool that allows for the painless and non-invasive examination of the entire gastrointestinal (GI) tract. The microcamera captures a large number of redundant frames for each WCE examination such that a video summarization technique is needed to assist in diagnosis. However, prevalent methods of summarizing WCE videos focus only on the representativeness of the frames owing to a lack of high-level information on their importance. This paper develops a frame importance-assisted sparse subset selection model, called FIAS3, to integrate the high-level frame importance from networks into a sparse subset selection model. The FIAS3 is optimized under three constraints: 1) a frame importance matrix to help pay more attention to important frames, 2) a sparsity constraint to make video summaries more compact, and 3) a similarity-inhibiting constraint to reduce redundancy. The results of experiments on a public dataset demonstrated that our FIAS3 outperforms other methods of summarizing WCE videos. Specifically, its coverage and video reconstruction error were 92% and 0.143, respectively, at a 90% compression ratio, recording respective at least 16.9% and 0.031 improvements over other methods. The results of generalization experiments showed that FIAS3 also achieves competitive results on private datasets.</description><subject>Compression ratio</subject><subject>Computer-aided diagnosis</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Endoscopy</subject><subject>Feature extraction</subject><subject>Frames (data processing)</subject><subject>Gastroenterology</subject><subject>Keyframe extraction</subject><subject>Lesions</subject><subject>Motion segmentation</subject><subject>Redundancy</subject><subject>Sparse matrices</subject><subject>Video data</subject><subject>Video summarization</subject><subject>Videos</subject><subject>Wireless capsule endoscopy (WCE)</subject><subject>Wireless communication</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU2L2zAQNaWFLtv9Be1B0LNTSSNbVm_BJG1goQf34yjG1mhRSCJXcg7bX19tvZSdyxvezHsz8KrqveAbIbj5tO373TBsJJewAam4MeZVdSNFa2pooH39on9b3eV85KW6QjX6pnrYH7YDfGb7hGdih_Mc04KXiWrMOeSFHBtmTJnYcB0zLWygE01LiBe2xMKdz5jCH2K_QiqDnFmPc76eiO0uLuYpzo_sZ3AU87vqjcdTprtnvK1-7Hff-6_1_bcvh357X0_QmKV2jnPf4EiEo_StBO29BonOg3BCN4pLEtxrZVALqaSB1qBvCqIm4x3cVofV10U82jmF8uCjjRjsPyKmB4tpCdOJrBadBHSdGJtWqVaN2lPXIU2KtJEtL14fV685xd9Xyos9xmu6lPet1FoBQNuJsgXr1pRizon8_6uC26eA7BqQfQrIPgdUVB9WVSCiFwoOslEa_gKZEIwE</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Xie, Weijie</creator><creator>Chen, Zefeiyun</creator><creator>Li, Qingyuan</creator><creator>Ma, Qingfei</creator><creator>Wang, Yusi</creator><creator>Liu, Tianbao</creator><creator>Fang, Yuxin</creator><creator>Zhao, Zhanpeng</creator><creator>Liu, Side</creator><creator>Yang, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2161-3231</orcidid><orcidid>https://orcid.org/0000-0002-4024-3619</orcidid></search><sort><creationdate>20230101</creationdate><title>FIAS3: Frame Importance-assisted Sparse Subset Selection to Summarize Wireless Capsule Endoscopy Videos</title><author>Xie, Weijie ; Chen, Zefeiyun ; Li, Qingyuan ; Ma, Qingfei ; Wang, Yusi ; Liu, Tianbao ; Fang, Yuxin ; Zhao, Zhanpeng ; Liu, Side ; Yang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-dd00f5abeeab2f6237ff732adf31d175402e10f749a712429369af5293a7e9fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Compression ratio</topic><topic>Computer-aided diagnosis</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Endoscopy</topic><topic>Feature extraction</topic><topic>Frames (data processing)</topic><topic>Gastroenterology</topic><topic>Keyframe extraction</topic><topic>Lesions</topic><topic>Motion segmentation</topic><topic>Redundancy</topic><topic>Sparse matrices</topic><topic>Video data</topic><topic>Video summarization</topic><topic>Videos</topic><topic>Wireless capsule endoscopy (WCE)</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Weijie</creatorcontrib><creatorcontrib>Chen, Zefeiyun</creatorcontrib><creatorcontrib>Li, Qingyuan</creatorcontrib><creatorcontrib>Ma, Qingfei</creatorcontrib><creatorcontrib>Wang, Yusi</creatorcontrib><creatorcontrib>Liu, Tianbao</creatorcontrib><creatorcontrib>Fang, Yuxin</creatorcontrib><creatorcontrib>Zhao, Zhanpeng</creatorcontrib><creatorcontrib>Liu, Side</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Weijie</au><au>Chen, Zefeiyun</au><au>Li, Qingyuan</au><au>Ma, Qingfei</au><au>Wang, Yusi</au><au>Liu, Tianbao</au><au>Fang, Yuxin</au><au>Zhao, Zhanpeng</au><au>Liu, Side</au><au>Yang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FIAS3: Frame Importance-assisted Sparse Subset Selection to Summarize Wireless Capsule Endoscopy Videos</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Wireless capsule endoscopy (WCE) is a recently developed tool that allows for the painless and non-invasive examination of the entire gastrointestinal (GI) tract. The microcamera captures a large number of redundant frames for each WCE examination such that a video summarization technique is needed to assist in diagnosis. However, prevalent methods of summarizing WCE videos focus only on the representativeness of the frames owing to a lack of high-level information on their importance. This paper develops a frame importance-assisted sparse subset selection model, called FIAS3, to integrate the high-level frame importance from networks into a sparse subset selection model. The FIAS3 is optimized under three constraints: 1) a frame importance matrix to help pay more attention to important frames, 2) a sparsity constraint to make video summaries more compact, and 3) a similarity-inhibiting constraint to reduce redundancy. The results of experiments on a public dataset demonstrated that our FIAS3 outperforms other methods of summarizing WCE videos. Specifically, its coverage and video reconstruction error were 92% and 0.143, respectively, at a 90% compression ratio, recording respective at least 16.9% and 0.031 improvements over other methods. The results of generalization experiments showed that FIAS3 also achieves competitive results on private datasets.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3240999</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2161-3231</orcidid><orcidid>https://orcid.org/0000-0002-4024-3619</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2023_3240999 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Compression ratio Computer-aided diagnosis Datasets Deep learning Endoscopy Feature extraction Frames (data processing) Gastroenterology Keyframe extraction Lesions Motion segmentation Redundancy Sparse matrices Video data Video summarization Videos Wireless capsule endoscopy (WCE) Wireless communication |
title | FIAS3: Frame Importance-assisted Sparse Subset Selection to Summarize Wireless Capsule Endoscopy Videos |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A35%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FIAS3:%20Frame%20Importance-assisted%20Sparse%20Subset%20Selection%20to%20Summarize%20Wireless%20Capsule%20Endoscopy%20Videos&rft.jtitle=IEEE%20access&rft.au=Xie,%20Weijie&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3240999&rft_dat=%3Cproquest_cross%3E2774333681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774333681&rft_id=info:pmid/&rft_ieee_id=10032547&rft_doaj_id=oai_doaj_org_article_71823ad81b564464b7fe88aec4e79260&rfr_iscdi=true |