FIAS3: Frame Importance-assisted Sparse Subset Selection to Summarize Wireless Capsule Endoscopy Videos

Wireless capsule endoscopy (WCE) is a recently developed tool that allows for the painless and non-invasive examination of the entire gastrointestinal (GI) tract. The microcamera captures a large number of redundant frames for each WCE examination such that a video summarization technique is needed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Xie, Weijie, Chen, Zefeiyun, Li, Qingyuan, Ma, Qingfei, Wang, Yusi, Liu, Tianbao, Fang, Yuxin, Zhao, Zhanpeng, Liu, Side, Yang, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Xie, Weijie
Chen, Zefeiyun
Li, Qingyuan
Ma, Qingfei
Wang, Yusi
Liu, Tianbao
Fang, Yuxin
Zhao, Zhanpeng
Liu, Side
Yang, Wei
description Wireless capsule endoscopy (WCE) is a recently developed tool that allows for the painless and non-invasive examination of the entire gastrointestinal (GI) tract. The microcamera captures a large number of redundant frames for each WCE examination such that a video summarization technique is needed to assist in diagnosis. However, prevalent methods of summarizing WCE videos focus only on the representativeness of the frames owing to a lack of high-level information on their importance. This paper develops a frame importance-assisted sparse subset selection model, called FIAS3, to integrate the high-level frame importance from networks into a sparse subset selection model. The FIAS3 is optimized under three constraints: 1) a frame importance matrix to help pay more attention to important frames, 2) a sparsity constraint to make video summaries more compact, and 3) a similarity-inhibiting constraint to reduce redundancy. The results of experiments on a public dataset demonstrated that our FIAS3 outperforms other methods of summarizing WCE videos. Specifically, its coverage and video reconstruction error were 92% and 0.143, respectively, at a 90% compression ratio, recording respective at least 16.9% and 0.031 improvements over other methods. The results of generalization experiments showed that FIAS3 also achieves competitive results on private datasets.
doi_str_mv 10.1109/ACCESS.2023.3240999
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3240999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10032547</ieee_id><doaj_id>oai_doaj_org_article_71823ad81b564464b7fe88aec4e79260</doaj_id><sourcerecordid>2774333681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-dd00f5abeeab2f6237ff732adf31d175402e10f749a712429369af5293a7e9fd3</originalsourceid><addsrcrecordid>eNpNUU2L2zAQNaWFLtv9Be1B0LNTSSNbVm_BJG1goQf34yjG1mhRSCJXcg7bX19tvZSdyxvezHsz8KrqveAbIbj5tO373TBsJJewAam4MeZVdSNFa2pooH39on9b3eV85KW6QjX6pnrYH7YDfGb7hGdih_Mc04KXiWrMOeSFHBtmTJnYcB0zLWygE01LiBe2xMKdz5jCH2K_QiqDnFmPc76eiO0uLuYpzo_sZ3AU87vqjcdTprtnvK1-7Hff-6_1_bcvh357X0_QmKV2jnPf4EiEo_StBO29BonOg3BCN4pLEtxrZVALqaSB1qBvCqIm4x3cVofV10U82jmF8uCjjRjsPyKmB4tpCdOJrBadBHSdGJtWqVaN2lPXIU2KtJEtL14fV685xd9Xyos9xmu6lPet1FoBQNuJsgXr1pRizon8_6uC26eA7BqQfQrIPgdUVB9WVSCiFwoOslEa_gKZEIwE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774333681</pqid></control><display><type>article</type><title>FIAS3: Frame Importance-assisted Sparse Subset Selection to Summarize Wireless Capsule Endoscopy Videos</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Xie, Weijie ; Chen, Zefeiyun ; Li, Qingyuan ; Ma, Qingfei ; Wang, Yusi ; Liu, Tianbao ; Fang, Yuxin ; Zhao, Zhanpeng ; Liu, Side ; Yang, Wei</creator><creatorcontrib>Xie, Weijie ; Chen, Zefeiyun ; Li, Qingyuan ; Ma, Qingfei ; Wang, Yusi ; Liu, Tianbao ; Fang, Yuxin ; Zhao, Zhanpeng ; Liu, Side ; Yang, Wei</creatorcontrib><description>Wireless capsule endoscopy (WCE) is a recently developed tool that allows for the painless and non-invasive examination of the entire gastrointestinal (GI) tract. The microcamera captures a large number of redundant frames for each WCE examination such that a video summarization technique is needed to assist in diagnosis. However, prevalent methods of summarizing WCE videos focus only on the representativeness of the frames owing to a lack of high-level information on their importance. This paper develops a frame importance-assisted sparse subset selection model, called FIAS3, to integrate the high-level frame importance from networks into a sparse subset selection model. The FIAS3 is optimized under three constraints: 1) a frame importance matrix to help pay more attention to important frames, 2) a sparsity constraint to make video summaries more compact, and 3) a similarity-inhibiting constraint to reduce redundancy. The results of experiments on a public dataset demonstrated that our FIAS3 outperforms other methods of summarizing WCE videos. Specifically, its coverage and video reconstruction error were 92% and 0.143, respectively, at a 90% compression ratio, recording respective at least 16.9% and 0.031 improvements over other methods. The results of generalization experiments showed that FIAS3 also achieves competitive results on private datasets.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3240999</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Compression ratio ; Computer-aided diagnosis ; Datasets ; Deep learning ; Endoscopy ; Feature extraction ; Frames (data processing) ; Gastroenterology ; Keyframe extraction ; Lesions ; Motion segmentation ; Redundancy ; Sparse matrices ; Video data ; Video summarization ; Videos ; Wireless capsule endoscopy (WCE) ; Wireless communication</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-dd00f5abeeab2f6237ff732adf31d175402e10f749a712429369af5293a7e9fd3</cites><orcidid>0000-0002-2161-3231 ; 0000-0002-4024-3619</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10032547$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,27614,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Xie, Weijie</creatorcontrib><creatorcontrib>Chen, Zefeiyun</creatorcontrib><creatorcontrib>Li, Qingyuan</creatorcontrib><creatorcontrib>Ma, Qingfei</creatorcontrib><creatorcontrib>Wang, Yusi</creatorcontrib><creatorcontrib>Liu, Tianbao</creatorcontrib><creatorcontrib>Fang, Yuxin</creatorcontrib><creatorcontrib>Zhao, Zhanpeng</creatorcontrib><creatorcontrib>Liu, Side</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><title>FIAS3: Frame Importance-assisted Sparse Subset Selection to Summarize Wireless Capsule Endoscopy Videos</title><title>IEEE access</title><addtitle>Access</addtitle><description>Wireless capsule endoscopy (WCE) is a recently developed tool that allows for the painless and non-invasive examination of the entire gastrointestinal (GI) tract. The microcamera captures a large number of redundant frames for each WCE examination such that a video summarization technique is needed to assist in diagnosis. However, prevalent methods of summarizing WCE videos focus only on the representativeness of the frames owing to a lack of high-level information on their importance. This paper develops a frame importance-assisted sparse subset selection model, called FIAS3, to integrate the high-level frame importance from networks into a sparse subset selection model. The FIAS3 is optimized under three constraints: 1) a frame importance matrix to help pay more attention to important frames, 2) a sparsity constraint to make video summaries more compact, and 3) a similarity-inhibiting constraint to reduce redundancy. The results of experiments on a public dataset demonstrated that our FIAS3 outperforms other methods of summarizing WCE videos. Specifically, its coverage and video reconstruction error were 92% and 0.143, respectively, at a 90% compression ratio, recording respective at least 16.9% and 0.031 improvements over other methods. The results of generalization experiments showed that FIAS3 also achieves competitive results on private datasets.</description><subject>Compression ratio</subject><subject>Computer-aided diagnosis</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Endoscopy</subject><subject>Feature extraction</subject><subject>Frames (data processing)</subject><subject>Gastroenterology</subject><subject>Keyframe extraction</subject><subject>Lesions</subject><subject>Motion segmentation</subject><subject>Redundancy</subject><subject>Sparse matrices</subject><subject>Video data</subject><subject>Video summarization</subject><subject>Videos</subject><subject>Wireless capsule endoscopy (WCE)</subject><subject>Wireless communication</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU2L2zAQNaWFLtv9Be1B0LNTSSNbVm_BJG1goQf34yjG1mhRSCJXcg7bX19tvZSdyxvezHsz8KrqveAbIbj5tO373TBsJJewAam4MeZVdSNFa2pooH39on9b3eV85KW6QjX6pnrYH7YDfGb7hGdih_Mc04KXiWrMOeSFHBtmTJnYcB0zLWygE01LiBe2xMKdz5jCH2K_QiqDnFmPc76eiO0uLuYpzo_sZ3AU87vqjcdTprtnvK1-7Hff-6_1_bcvh357X0_QmKV2jnPf4EiEo_StBO29BonOg3BCN4pLEtxrZVALqaSB1qBvCqIm4x3cVofV10U82jmF8uCjjRjsPyKmB4tpCdOJrBadBHSdGJtWqVaN2lPXIU2KtJEtL14fV685xd9Xyos9xmu6lPet1FoBQNuJsgXr1pRizon8_6uC26eA7BqQfQrIPgdUVB9WVSCiFwoOslEa_gKZEIwE</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Xie, Weijie</creator><creator>Chen, Zefeiyun</creator><creator>Li, Qingyuan</creator><creator>Ma, Qingfei</creator><creator>Wang, Yusi</creator><creator>Liu, Tianbao</creator><creator>Fang, Yuxin</creator><creator>Zhao, Zhanpeng</creator><creator>Liu, Side</creator><creator>Yang, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2161-3231</orcidid><orcidid>https://orcid.org/0000-0002-4024-3619</orcidid></search><sort><creationdate>20230101</creationdate><title>FIAS3: Frame Importance-assisted Sparse Subset Selection to Summarize Wireless Capsule Endoscopy Videos</title><author>Xie, Weijie ; Chen, Zefeiyun ; Li, Qingyuan ; Ma, Qingfei ; Wang, Yusi ; Liu, Tianbao ; Fang, Yuxin ; Zhao, Zhanpeng ; Liu, Side ; Yang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-dd00f5abeeab2f6237ff732adf31d175402e10f749a712429369af5293a7e9fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Compression ratio</topic><topic>Computer-aided diagnosis</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Endoscopy</topic><topic>Feature extraction</topic><topic>Frames (data processing)</topic><topic>Gastroenterology</topic><topic>Keyframe extraction</topic><topic>Lesions</topic><topic>Motion segmentation</topic><topic>Redundancy</topic><topic>Sparse matrices</topic><topic>Video data</topic><topic>Video summarization</topic><topic>Videos</topic><topic>Wireless capsule endoscopy (WCE)</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Weijie</creatorcontrib><creatorcontrib>Chen, Zefeiyun</creatorcontrib><creatorcontrib>Li, Qingyuan</creatorcontrib><creatorcontrib>Ma, Qingfei</creatorcontrib><creatorcontrib>Wang, Yusi</creatorcontrib><creatorcontrib>Liu, Tianbao</creatorcontrib><creatorcontrib>Fang, Yuxin</creatorcontrib><creatorcontrib>Zhao, Zhanpeng</creatorcontrib><creatorcontrib>Liu, Side</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Weijie</au><au>Chen, Zefeiyun</au><au>Li, Qingyuan</au><au>Ma, Qingfei</au><au>Wang, Yusi</au><au>Liu, Tianbao</au><au>Fang, Yuxin</au><au>Zhao, Zhanpeng</au><au>Liu, Side</au><au>Yang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FIAS3: Frame Importance-assisted Sparse Subset Selection to Summarize Wireless Capsule Endoscopy Videos</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Wireless capsule endoscopy (WCE) is a recently developed tool that allows for the painless and non-invasive examination of the entire gastrointestinal (GI) tract. The microcamera captures a large number of redundant frames for each WCE examination such that a video summarization technique is needed to assist in diagnosis. However, prevalent methods of summarizing WCE videos focus only on the representativeness of the frames owing to a lack of high-level information on their importance. This paper develops a frame importance-assisted sparse subset selection model, called FIAS3, to integrate the high-level frame importance from networks into a sparse subset selection model. The FIAS3 is optimized under three constraints: 1) a frame importance matrix to help pay more attention to important frames, 2) a sparsity constraint to make video summaries more compact, and 3) a similarity-inhibiting constraint to reduce redundancy. The results of experiments on a public dataset demonstrated that our FIAS3 outperforms other methods of summarizing WCE videos. Specifically, its coverage and video reconstruction error were 92% and 0.143, respectively, at a 90% compression ratio, recording respective at least 16.9% and 0.031 improvements over other methods. The results of generalization experiments showed that FIAS3 also achieves competitive results on private datasets.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3240999</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2161-3231</orcidid><orcidid>https://orcid.org/0000-0002-4024-3619</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2023_3240999
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Compression ratio
Computer-aided diagnosis
Datasets
Deep learning
Endoscopy
Feature extraction
Frames (data processing)
Gastroenterology
Keyframe extraction
Lesions
Motion segmentation
Redundancy
Sparse matrices
Video data
Video summarization
Videos
Wireless capsule endoscopy (WCE)
Wireless communication
title FIAS3: Frame Importance-assisted Sparse Subset Selection to Summarize Wireless Capsule Endoscopy Videos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A35%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FIAS3:%20Frame%20Importance-assisted%20Sparse%20Subset%20Selection%20to%20Summarize%20Wireless%20Capsule%20Endoscopy%20Videos&rft.jtitle=IEEE%20access&rft.au=Xie,%20Weijie&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3240999&rft_dat=%3Cproquest_cross%3E2774333681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774333681&rft_id=info:pmid/&rft_ieee_id=10032547&rft_doaj_id=oai_doaj_org_article_71823ad81b564464b7fe88aec4e79260&rfr_iscdi=true