The Domain Decomposition Method with Adaptive Time Step for the Transient Thermal Analysis of 3-D ICs
With the continuous emergence of various advanced packaging technologies such as copper interconnection and 3-D packaging technology, it is essential to efficiently and accurately investigate the thermal analysis of high-performance, high-power and complicated electronic devices to better design hea...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Liu, Na Wang, Chenyang Chen, Xi Wu, Qiuyue Liu, Qiqiang Zhuang, Mingwei Shi, Linlin Liu, Qing Huo |
description | With the continuous emergence of various advanced packaging technologies such as copper interconnection and 3-D packaging technology, it is essential to efficiently and accurately investigate the thermal analysis of high-performance, high-power and complicated electronic devices to better design heat dissipation structures. However, multiscale transient thermal analysis of complex electronic devices by existing numerical methods is still a challenge. In this work, the 3-D domain decomposition method (DDM) with the adaptive time step for the transient thermal analysis of integrated circuits (ICs) is proposed to tackle this problem. By flexible multiscale mesh generation and automatically time step changes based on posteriori errors, the new method significantly improves computational efficiency. Some illustrative numerical examples are presented to verify the accuracy and efficiency of the proposed method by considering 3-D transient heat transfer with thermal conduction, natural convection and radiation boundaries. |
doi_str_mv | 10.1109/ACCESS.2023.3240957 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3240957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10032319</ieee_id><doaj_id>oai_doaj_org_article_c0017e4e0018453aa57845c986ecfa21</doaj_id><sourcerecordid>2818367140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-ed4b1f4ff52c743ef0b22751549ba6f4c740660ccabc9cdb5543ae847bbae27c3</originalsourceid><addsrcrecordid>eNpNUU1v1DAQjRBIVG1_ARwscc7izzg5rrIFVirisMvZmjhj1qtNHGwX1H-PS6qqc3mjp3lvZvSq6gOjG8Zo93nb93eHw4ZTLjaCS9op_aa64qzpaqFE8_ZV_766TelMS7WFUvqqwuMJyS5M4GeyQxumJSSffZjJd8ynMJK_Pp_IdoQl-z9Ijn5Ccsi4EBciyUV7jDAnj3MmxSlOcCHbGS6PyScSHBH1juz7dFO9c3BJePuM19XPL3fH_lt9_-Prvt_e17acnWsc5cCcdE5xq6VARwfOtWJKdgM0ThaSNg21Fgbb2XFQSgrAVuphAOTaiutqv_qOAc5miX6C-GgCePOfCPGXgZi9vaCxlDKNEgu0UgkApQvarm3QOuCseH1avZYYfj9gyuYcHmL5LRneslY0mklapsQ6ZWNIKaJ72cqoeYrHrPGYp3jMczxF9XFVeUR8paCCC9aJf30FiqQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818367140</pqid></control><display><type>article</type><title>The Domain Decomposition Method with Adaptive Time Step for the Transient Thermal Analysis of 3-D ICs</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Liu, Na ; Wang, Chenyang ; Chen, Xi ; Wu, Qiuyue ; Liu, Qiqiang ; Zhuang, Mingwei ; Shi, Linlin ; Liu, Qing Huo</creator><creatorcontrib>Liu, Na ; Wang, Chenyang ; Chen, Xi ; Wu, Qiuyue ; Liu, Qiqiang ; Zhuang, Mingwei ; Shi, Linlin ; Liu, Qing Huo</creatorcontrib><description>With the continuous emergence of various advanced packaging technologies such as copper interconnection and 3-D packaging technology, it is essential to efficiently and accurately investigate the thermal analysis of high-performance, high-power and complicated electronic devices to better design heat dissipation structures. However, multiscale transient thermal analysis of complex electronic devices by existing numerical methods is still a challenge. In this work, the 3-D domain decomposition method (DDM) with the adaptive time step for the transient thermal analysis of integrated circuits (ICs) is proposed to tackle this problem. By flexible multiscale mesh generation and automatically time step changes based on posteriori errors, the new method significantly improves computational efficiency. Some illustrative numerical examples are presented to verify the accuracy and efficiency of the proposed method by considering 3-D transient heat transfer with thermal conduction, natural convection and radiation boundaries.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3240957</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>adaptive time step ; Conduction heating ; domain decomposition method (DDM) ; Domain decomposition methods ; Electronic devices ; Finite element analysis ; Free convection ; Heating systems ; Integrated circuit modeling ; Integrated circuits ; integrated circuits (ICs) ; Mathematical models ; Mesh generation ; Numerical methods ; Packaging ; Thermal analysis ; Transient analysis ; Transient heat transfer</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-ed4b1f4ff52c743ef0b22751549ba6f4c740660ccabc9cdb5543ae847bbae27c3</citedby><cites>FETCH-LOGICAL-c409t-ed4b1f4ff52c743ef0b22751549ba6f4c740660ccabc9cdb5543ae847bbae27c3</cites><orcidid>0000-0002-5771-6603 ; 0000-0001-5286-4423 ; 0000-0002-6533-7312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10032319$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Liu, Na</creatorcontrib><creatorcontrib>Wang, Chenyang</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Wu, Qiuyue</creatorcontrib><creatorcontrib>Liu, Qiqiang</creatorcontrib><creatorcontrib>Zhuang, Mingwei</creatorcontrib><creatorcontrib>Shi, Linlin</creatorcontrib><creatorcontrib>Liu, Qing Huo</creatorcontrib><title>The Domain Decomposition Method with Adaptive Time Step for the Transient Thermal Analysis of 3-D ICs</title><title>IEEE access</title><addtitle>Access</addtitle><description>With the continuous emergence of various advanced packaging technologies such as copper interconnection and 3-D packaging technology, it is essential to efficiently and accurately investigate the thermal analysis of high-performance, high-power and complicated electronic devices to better design heat dissipation structures. However, multiscale transient thermal analysis of complex electronic devices by existing numerical methods is still a challenge. In this work, the 3-D domain decomposition method (DDM) with the adaptive time step for the transient thermal analysis of integrated circuits (ICs) is proposed to tackle this problem. By flexible multiscale mesh generation and automatically time step changes based on posteriori errors, the new method significantly improves computational efficiency. Some illustrative numerical examples are presented to verify the accuracy and efficiency of the proposed method by considering 3-D transient heat transfer with thermal conduction, natural convection and radiation boundaries.</description><subject>adaptive time step</subject><subject>Conduction heating</subject><subject>domain decomposition method (DDM)</subject><subject>Domain decomposition methods</subject><subject>Electronic devices</subject><subject>Finite element analysis</subject><subject>Free convection</subject><subject>Heating systems</subject><subject>Integrated circuit modeling</subject><subject>Integrated circuits</subject><subject>integrated circuits (ICs)</subject><subject>Mathematical models</subject><subject>Mesh generation</subject><subject>Numerical methods</subject><subject>Packaging</subject><subject>Thermal analysis</subject><subject>Transient analysis</subject><subject>Transient heat transfer</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1v1DAQjRBIVG1_ARwscc7izzg5rrIFVirisMvZmjhj1qtNHGwX1H-PS6qqc3mjp3lvZvSq6gOjG8Zo93nb93eHw4ZTLjaCS9op_aa64qzpaqFE8_ZV_766TelMS7WFUvqqwuMJyS5M4GeyQxumJSSffZjJd8ynMJK_Pp_IdoQl-z9Ijn5Ccsi4EBciyUV7jDAnj3MmxSlOcCHbGS6PyScSHBH1juz7dFO9c3BJePuM19XPL3fH_lt9_-Prvt_e17acnWsc5cCcdE5xq6VARwfOtWJKdgM0ThaSNg21Fgbb2XFQSgrAVuphAOTaiutqv_qOAc5miX6C-GgCePOfCPGXgZi9vaCxlDKNEgu0UgkApQvarm3QOuCseH1avZYYfj9gyuYcHmL5LRneslY0mklapsQ6ZWNIKaJ72cqoeYrHrPGYp3jMczxF9XFVeUR8paCCC9aJf30FiqQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Liu, Na</creator><creator>Wang, Chenyang</creator><creator>Chen, Xi</creator><creator>Wu, Qiuyue</creator><creator>Liu, Qiqiang</creator><creator>Zhuang, Mingwei</creator><creator>Shi, Linlin</creator><creator>Liu, Qing Huo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5771-6603</orcidid><orcidid>https://orcid.org/0000-0001-5286-4423</orcidid><orcidid>https://orcid.org/0000-0002-6533-7312</orcidid></search><sort><creationdate>20230101</creationdate><title>The Domain Decomposition Method with Adaptive Time Step for the Transient Thermal Analysis of 3-D ICs</title><author>Liu, Na ; Wang, Chenyang ; Chen, Xi ; Wu, Qiuyue ; Liu, Qiqiang ; Zhuang, Mingwei ; Shi, Linlin ; Liu, Qing Huo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-ed4b1f4ff52c743ef0b22751549ba6f4c740660ccabc9cdb5543ae847bbae27c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>adaptive time step</topic><topic>Conduction heating</topic><topic>domain decomposition method (DDM)</topic><topic>Domain decomposition methods</topic><topic>Electronic devices</topic><topic>Finite element analysis</topic><topic>Free convection</topic><topic>Heating systems</topic><topic>Integrated circuit modeling</topic><topic>Integrated circuits</topic><topic>integrated circuits (ICs)</topic><topic>Mathematical models</topic><topic>Mesh generation</topic><topic>Numerical methods</topic><topic>Packaging</topic><topic>Thermal analysis</topic><topic>Transient analysis</topic><topic>Transient heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Na</creatorcontrib><creatorcontrib>Wang, Chenyang</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Wu, Qiuyue</creatorcontrib><creatorcontrib>Liu, Qiqiang</creatorcontrib><creatorcontrib>Zhuang, Mingwei</creatorcontrib><creatorcontrib>Shi, Linlin</creatorcontrib><creatorcontrib>Liu, Qing Huo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Na</au><au>Wang, Chenyang</au><au>Chen, Xi</au><au>Wu, Qiuyue</au><au>Liu, Qiqiang</au><au>Zhuang, Mingwei</au><au>Shi, Linlin</au><au>Liu, Qing Huo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Domain Decomposition Method with Adaptive Time Step for the Transient Thermal Analysis of 3-D ICs</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>With the continuous emergence of various advanced packaging technologies such as copper interconnection and 3-D packaging technology, it is essential to efficiently and accurately investigate the thermal analysis of high-performance, high-power and complicated electronic devices to better design heat dissipation structures. However, multiscale transient thermal analysis of complex electronic devices by existing numerical methods is still a challenge. In this work, the 3-D domain decomposition method (DDM) with the adaptive time step for the transient thermal analysis of integrated circuits (ICs) is proposed to tackle this problem. By flexible multiscale mesh generation and automatically time step changes based on posteriori errors, the new method significantly improves computational efficiency. Some illustrative numerical examples are presented to verify the accuracy and efficiency of the proposed method by considering 3-D transient heat transfer with thermal conduction, natural convection and radiation boundaries.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3240957</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5771-6603</orcidid><orcidid>https://orcid.org/0000-0001-5286-4423</orcidid><orcidid>https://orcid.org/0000-0002-6533-7312</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2023_3240957 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | adaptive time step Conduction heating domain decomposition method (DDM) Domain decomposition methods Electronic devices Finite element analysis Free convection Heating systems Integrated circuit modeling Integrated circuits integrated circuits (ICs) Mathematical models Mesh generation Numerical methods Packaging Thermal analysis Transient analysis Transient heat transfer |
title | The Domain Decomposition Method with Adaptive Time Step for the Transient Thermal Analysis of 3-D ICs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A11%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Domain%20Decomposition%20Method%20with%20Adaptive%20Time%20Step%20for%20the%20Transient%20Thermal%20Analysis%20of%203-D%20ICs&rft.jtitle=IEEE%20access&rft.au=Liu,%20Na&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3240957&rft_dat=%3Cproquest_cross%3E2818367140%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2818367140&rft_id=info:pmid/&rft_ieee_id=10032319&rft_doaj_id=oai_doaj_org_article_c0017e4e0018453aa57845c986ecfa21&rfr_iscdi=true |