Fault Tolerant Control via Input-Output Linearization method for LED-Driver using a Boost Converter
This paper proposes a method based on an input-output linearization controller with a nonlinear adaptive observer, in order to achieve both an effective light-emitting diode (LED) current tracking and an actuator fault tolerant controller strategy for a LED-driver, using a boost converter. The parti...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Torres, Gerardo Ortiz Rumbo-Morales, Jesse Y. Sanchez, Rene Osorio Martinez-Garcia, Mario Blanco, Marco Antonio Rodriguez |
description | This paper proposes a method based on an input-output linearization controller with a nonlinear adaptive observer, in order to achieve both an effective light-emitting diode (LED) current tracking and an actuator fault tolerant controller strategy for a LED-driver, using a boost converter. The partial fault is presented as a Loss of Effectiveness (LoE) in the embedded control target by considering that it generates a faulty Pulse-Width Modulation (PWM) signal. Also, faults of energy storage components in the power system are considered as actuator partial faults. An internal stability analysis is presented to ensure the feasibility of the nonlinear controller design. The nominal feedback controller is able to compensate for the nonlinearity of the system exactly, thus yielding a linear control loop. Furthermore, a nonlinear adaptive observer is considered for fault estimation. When the actuator fault is detected and estimated correctly, fault accommodation and reconfiguration strategies are performed to reduce the fault's effect. The controller and observer gains are tuned using genetic algorithm techniques to have a desired closed-loop and fault estimation error response. Finally, simulations results are done in order to illustrate the effectiveness of the proposed methodology. |
doi_str_mv | 10.1109/ACCESS.2023.3235348 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3235348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10012391</ieee_id><doaj_id>oai_doaj_org_article_5f57fdfccf814cdc8fa696a5d9d72448</doaj_id><sourcerecordid>2773450077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-df109d1ecd03f57df4fe14996ffb7dadad082fa088a5beb92e691c0f5205e3ff3</originalsourceid><addsrcrecordid>eNpNUU1P3DAQtapWKlr4Be3BEuds_REn8ZGGha60Egfo2fLaM-BViLeOg1R-PYYghH14M09-b8Z6hPzgbM05078u-n5ze7sWTMi1FFLJuvtCTgRvdFWa5uun-js5m6YDK6crlGpPiLuy85DpXRwg2THTPo45xYE-BUu343HO1c2cC9BdGMGm8GxziCN9hPwQPcWY6G5zWV2m8ASJzlMY76mlv2Oc3qwKmSGdkm9ohwnO3nFF_l5t7vo_1e7mettf7Conpc6Vx_Ibz8F5JlG1HmsEXmvdIO5bb8tlnUDLus6qPey1gEZzx1AJpkAiyhXZLr4-2oM5pvBo038TbTBvREz3xqYc3ABGlQHo0TnseO2869A2urHKa9-Kuu6K1_nidUzx3wxTNoc4p7Gsb0TbyloxVmBF5PLKpThNCfBjKmfmNRyzhGNewzHv4RTVz0UVAOCTgnEhNZcv_jWMvA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773450077</pqid></control><display><type>article</type><title>Fault Tolerant Control via Input-Output Linearization method for LED-Driver using a Boost Converter</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Torres, Gerardo Ortiz ; Rumbo-Morales, Jesse Y. ; Sanchez, Rene Osorio ; Martinez-Garcia, Mario ; Blanco, Marco Antonio Rodriguez</creator><creatorcontrib>Torres, Gerardo Ortiz ; Rumbo-Morales, Jesse Y. ; Sanchez, Rene Osorio ; Martinez-Garcia, Mario ; Blanco, Marco Antonio Rodriguez</creatorcontrib><description>This paper proposes a method based on an input-output linearization controller with a nonlinear adaptive observer, in order to achieve both an effective light-emitting diode (LED) current tracking and an actuator fault tolerant controller strategy for a LED-driver, using a boost converter. The partial fault is presented as a Loss of Effectiveness (LoE) in the embedded control target by considering that it generates a faulty Pulse-Width Modulation (PWM) signal. Also, faults of energy storage components in the power system are considered as actuator partial faults. An internal stability analysis is presented to ensure the feasibility of the nonlinear controller design. The nominal feedback controller is able to compensate for the nonlinearity of the system exactly, thus yielding a linear control loop. Furthermore, a nonlinear adaptive observer is considered for fault estimation. When the actuator fault is detected and estimated correctly, fault accommodation and reconfiguration strategies are performed to reduce the fault's effect. The controller and observer gains are tuned using genetic algorithm techniques to have a desired closed-loop and fault estimation error response. Finally, simulations results are done in order to illustrate the effectiveness of the proposed methodology.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3235348</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuators ; Adaptive control ; Boost converter ; Circuit faults ; Closed loops ; Control systems design ; Controllers ; Effectiveness ; Energy storage ; Fault tolerance ; fault tolerant control ; Feedback control ; genetic algorithm ; Genetic algorithms ; input-output linearization ; LED-driver ; Light emitting diodes ; Linear control ; Linearization ; Mathematical models ; Nonlinear control ; Nonlinear dynamical systems ; Nonlinearity ; Observers ; Pulse duration modulation ; Reconfiguration ; Stability analysis</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-df109d1ecd03f57df4fe14996ffb7dadad082fa088a5beb92e691c0f5205e3ff3</citedby><cites>FETCH-LOGICAL-c339t-df109d1ecd03f57df4fe14996ffb7dadad082fa088a5beb92e691c0f5205e3ff3</cites><orcidid>0000-0003-0885-6391 ; 0000-0002-3790-7277</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10012391$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,27631,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>Torres, Gerardo Ortiz</creatorcontrib><creatorcontrib>Rumbo-Morales, Jesse Y.</creatorcontrib><creatorcontrib>Sanchez, Rene Osorio</creatorcontrib><creatorcontrib>Martinez-Garcia, Mario</creatorcontrib><creatorcontrib>Blanco, Marco Antonio Rodriguez</creatorcontrib><title>Fault Tolerant Control via Input-Output Linearization method for LED-Driver using a Boost Converter</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper proposes a method based on an input-output linearization controller with a nonlinear adaptive observer, in order to achieve both an effective light-emitting diode (LED) current tracking and an actuator fault tolerant controller strategy for a LED-driver, using a boost converter. The partial fault is presented as a Loss of Effectiveness (LoE) in the embedded control target by considering that it generates a faulty Pulse-Width Modulation (PWM) signal. Also, faults of energy storage components in the power system are considered as actuator partial faults. An internal stability analysis is presented to ensure the feasibility of the nonlinear controller design. The nominal feedback controller is able to compensate for the nonlinearity of the system exactly, thus yielding a linear control loop. Furthermore, a nonlinear adaptive observer is considered for fault estimation. When the actuator fault is detected and estimated correctly, fault accommodation and reconfiguration strategies are performed to reduce the fault's effect. The controller and observer gains are tuned using genetic algorithm techniques to have a desired closed-loop and fault estimation error response. Finally, simulations results are done in order to illustrate the effectiveness of the proposed methodology.</description><subject>Actuators</subject><subject>Adaptive control</subject><subject>Boost converter</subject><subject>Circuit faults</subject><subject>Closed loops</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Effectiveness</subject><subject>Energy storage</subject><subject>Fault tolerance</subject><subject>fault tolerant control</subject><subject>Feedback control</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>input-output linearization</subject><subject>LED-driver</subject><subject>Light emitting diodes</subject><subject>Linear control</subject><subject>Linearization</subject><subject>Mathematical models</subject><subject>Nonlinear control</subject><subject>Nonlinear dynamical systems</subject><subject>Nonlinearity</subject><subject>Observers</subject><subject>Pulse duration modulation</subject><subject>Reconfiguration</subject><subject>Stability analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1P3DAQtapWKlr4Be3BEuds_REn8ZGGha60Egfo2fLaM-BViLeOg1R-PYYghH14M09-b8Z6hPzgbM05078u-n5ze7sWTMi1FFLJuvtCTgRvdFWa5uun-js5m6YDK6crlGpPiLuy85DpXRwg2THTPo45xYE-BUu343HO1c2cC9BdGMGm8GxziCN9hPwQPcWY6G5zWV2m8ASJzlMY76mlv2Oc3qwKmSGdkm9ohwnO3nFF_l5t7vo_1e7mettf7Conpc6Vx_Ibz8F5JlG1HmsEXmvdIO5bb8tlnUDLus6qPey1gEZzx1AJpkAiyhXZLr4-2oM5pvBo038TbTBvREz3xqYc3ABGlQHo0TnseO2869A2urHKa9-Kuu6K1_nidUzx3wxTNoc4p7Gsb0TbyloxVmBF5PLKpThNCfBjKmfmNRyzhGNewzHv4RTVz0UVAOCTgnEhNZcv_jWMvA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Torres, Gerardo Ortiz</creator><creator>Rumbo-Morales, Jesse Y.</creator><creator>Sanchez, Rene Osorio</creator><creator>Martinez-Garcia, Mario</creator><creator>Blanco, Marco Antonio Rodriguez</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0885-6391</orcidid><orcidid>https://orcid.org/0000-0002-3790-7277</orcidid></search><sort><creationdate>20230101</creationdate><title>Fault Tolerant Control via Input-Output Linearization method for LED-Driver using a Boost Converter</title><author>Torres, Gerardo Ortiz ; Rumbo-Morales, Jesse Y. ; Sanchez, Rene Osorio ; Martinez-Garcia, Mario ; Blanco, Marco Antonio Rodriguez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-df109d1ecd03f57df4fe14996ffb7dadad082fa088a5beb92e691c0f5205e3ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuators</topic><topic>Adaptive control</topic><topic>Boost converter</topic><topic>Circuit faults</topic><topic>Closed loops</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Effectiveness</topic><topic>Energy storage</topic><topic>Fault tolerance</topic><topic>fault tolerant control</topic><topic>Feedback control</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>input-output linearization</topic><topic>LED-driver</topic><topic>Light emitting diodes</topic><topic>Linear control</topic><topic>Linearization</topic><topic>Mathematical models</topic><topic>Nonlinear control</topic><topic>Nonlinear dynamical systems</topic><topic>Nonlinearity</topic><topic>Observers</topic><topic>Pulse duration modulation</topic><topic>Reconfiguration</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torres, Gerardo Ortiz</creatorcontrib><creatorcontrib>Rumbo-Morales, Jesse Y.</creatorcontrib><creatorcontrib>Sanchez, Rene Osorio</creatorcontrib><creatorcontrib>Martinez-Garcia, Mario</creatorcontrib><creatorcontrib>Blanco, Marco Antonio Rodriguez</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torres, Gerardo Ortiz</au><au>Rumbo-Morales, Jesse Y.</au><au>Sanchez, Rene Osorio</au><au>Martinez-Garcia, Mario</au><au>Blanco, Marco Antonio Rodriguez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault Tolerant Control via Input-Output Linearization method for LED-Driver using a Boost Converter</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper proposes a method based on an input-output linearization controller with a nonlinear adaptive observer, in order to achieve both an effective light-emitting diode (LED) current tracking and an actuator fault tolerant controller strategy for a LED-driver, using a boost converter. The partial fault is presented as a Loss of Effectiveness (LoE) in the embedded control target by considering that it generates a faulty Pulse-Width Modulation (PWM) signal. Also, faults of energy storage components in the power system are considered as actuator partial faults. An internal stability analysis is presented to ensure the feasibility of the nonlinear controller design. The nominal feedback controller is able to compensate for the nonlinearity of the system exactly, thus yielding a linear control loop. Furthermore, a nonlinear adaptive observer is considered for fault estimation. When the actuator fault is detected and estimated correctly, fault accommodation and reconfiguration strategies are performed to reduce the fault's effect. The controller and observer gains are tuned using genetic algorithm techniques to have a desired closed-loop and fault estimation error response. Finally, simulations results are done in order to illustrate the effectiveness of the proposed methodology.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3235348</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0885-6391</orcidid><orcidid>https://orcid.org/0000-0002-3790-7277</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2023_3235348 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Actuators Adaptive control Boost converter Circuit faults Closed loops Control systems design Controllers Effectiveness Energy storage Fault tolerance fault tolerant control Feedback control genetic algorithm Genetic algorithms input-output linearization LED-driver Light emitting diodes Linear control Linearization Mathematical models Nonlinear control Nonlinear dynamical systems Nonlinearity Observers Pulse duration modulation Reconfiguration Stability analysis |
title | Fault Tolerant Control via Input-Output Linearization method for LED-Driver using a Boost Converter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A39%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20Tolerant%20Control%20via%20Input-Output%20Linearization%20method%20for%20LED-Driver%20using%20a%20Boost%20Converter&rft.jtitle=IEEE%20access&rft.au=Torres,%20Gerardo%20Ortiz&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3235348&rft_dat=%3Cproquest_cross%3E2773450077%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2773450077&rft_id=info:pmid/&rft_ieee_id=10012391&rft_doaj_id=oai_doaj_org_article_5f57fdfccf814cdc8fa696a5d9d72448&rfr_iscdi=true |