Voltage Reference With Corner-Aware Replica Selection/Merging for 1.4-mV Accuracy in Harvested Systems Down to 3.9 pW, 0.2 V

This paper introduces a voltage reference design able to operate over the wide supply voltage range from 1.8 V down to 0.2 V, and pW power. To mitigate the effect of global variations (e.g., die-to-die, wafer-to-wafer), the proposed NMOS-only architecture introduces process sensor-driven selection/m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023, Vol.11, p.3584-3596
Hauptverfasser: Fassio, Luigi, Lin, Longyang, De Rose, Raffaele, Lanuzza, Marco, Crupi, Felice, Alioto, Massimo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3596
container_issue
container_start_page 3584
container_title IEEE access
container_volume 11
creator Fassio, Luigi
Lin, Longyang
De Rose, Raffaele
Lanuzza, Marco
Crupi, Felice
Alioto, Massimo
description This paper introduces a voltage reference design able to operate over the wide supply voltage range from 1.8 V down to 0.2 V, and pW power. To mitigate the effect of global variations (e.g., die-to-die, wafer-to-wafer), the proposed NMOS-only architecture introduces process sensor-driven selection/merging of circuit replicas at boot (or run) time. Being the circuit replicas optimized for different process corners, their selection or merging fundamentally relaxes the traditionally conflicting design tradeoffs that affect the overall voltage accuracy in deep sub-threshold, while not requiring any testing-time trimming or non-volatile memory process option for low-cost applications. Measurements of a 180-nm test chip across 45 dice from different corner wafers demonstrate reliable operation down to 0.2 V with 3.9-pW power consumption at room temperature. The proposed process sensor-driven replica selection is shown to enable 1.6% V_{REF} process sensitivity (i.e., \sigma/\mu) , 34.9- \mu \text{V}/^{\circ }\text{C} (819-ppm/°C) mean temperature coefficient, and 60.7- \mu \text{V} /V (0.14-%/V) mean line sensitivity across process corners. The resulting 1.4-mV overall absolute accuracy of the reference voltage across dice and corner wafers (1- \sigma ), voltage fluctuations (0.3 V) and temperature deviation (20°C) is improved by 1.9\times compared to the case without replica selection, and by 3- 15.4\times compared to prior references with sub-nW consumption.
doi_str_mv 10.1109/ACCESS.2023.3234621
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3234621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10007824</ieee_id><doaj_id>oai_doaj_org_article_50f51ca33ec34dc4ada87b278f936d5a</doaj_id><sourcerecordid>2765184222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-2ad85eff199d32c23c4198712841a737a98d9dd26032a374ca7a90a3a0275f6b3</originalsourceid><addsrcrecordid>eNpNUcFq3EAMNaWBhiRf0B4Geq2dGcn2eI6LmyaBlEK23RwHZUbeevF6tmNvw0I-Pt46lOgi8aT3JPGS5KOSmVLSXC7q-mq5zEACZgiYl6DeJaegSpNigeX7N_WH5GIYNnKKaoIKfZo8r0I30prFPTccuXcsHtrxt6hD7DmmiyeKx96uax2JJXfsxjb0l985rtt-LZoQhcrydLsSC-f2kdxBtL24ofiXh5G9WB6mtB3E1_DUizEIzIzYPXwRMgOxOk9OGuoGvnjNZ8mvb1c_65v07sf1bb24Sx2iGVMgXxXcNMoYj-AAXa5MpRVUuSKNmkzljfdQSgRCnTuaIElIEnTRlI94ltzOuj7Qxu5iu6V4sIFa-w8IcW0pjq3r2BayKZQjRHaYe5eTp0o_gq4ag6UvaNL6PGvtYvizn560m7CP_XS-BV0WqsoBYJrCecrFMAyRm_9blbRH1-zsmj26Zl9dm1ifZlbLzG8YUuoKcnwB_KyQYg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765184222</pqid></control><display><type>article</type><title>Voltage Reference With Corner-Aware Replica Selection/Merging for 1.4-mV Accuracy in Harvested Systems Down to 3.9 pW, 0.2 V</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fassio, Luigi ; Lin, Longyang ; De Rose, Raffaele ; Lanuzza, Marco ; Crupi, Felice ; Alioto, Massimo</creator><creatorcontrib>Fassio, Luigi ; Lin, Longyang ; De Rose, Raffaele ; Lanuzza, Marco ; Crupi, Felice ; Alioto, Massimo</creatorcontrib><description><![CDATA[This paper introduces a voltage reference design able to operate over the wide supply voltage range from 1.8 V down to 0.2 V, and pW power. To mitigate the effect of global variations (e.g., die-to-die, wafer-to-wafer), the proposed NMOS-only architecture introduces process sensor-driven selection/merging of circuit replicas at boot (or run) time. Being the circuit replicas optimized for different process corners, their selection or merging fundamentally relaxes the traditionally conflicting design tradeoffs that affect the overall voltage accuracy in deep sub-threshold, while not requiring any testing-time trimming or non-volatile memory process option for low-cost applications. Measurements of a 180-nm test chip across 45 dice from different corner wafers demonstrate reliable operation down to 0.2 V with 3.9-pW power consumption at room temperature. The proposed process sensor-driven replica selection is shown to enable 1.6% <inline-formula> <tex-math notation="LaTeX">V_{REF} </tex-math></inline-formula> process sensitivity (i.e., <inline-formula> <tex-math notation="LaTeX">\sigma/\mu) </tex-math></inline-formula>, 34.9-<inline-formula> <tex-math notation="LaTeX">\mu \text{V}/^{\circ }\text{C} </tex-math></inline-formula> (819-ppm/°C) mean temperature coefficient, and 60.7-<inline-formula> <tex-math notation="LaTeX">\mu \text{V} </tex-math></inline-formula>/V (0.14-%/V) mean line sensitivity across process corners. The resulting 1.4-mV overall absolute accuracy of the reference voltage across dice and corner wafers (1-<inline-formula> <tex-math notation="LaTeX">\sigma </tex-math></inline-formula>), voltage fluctuations (0.3 V) and temperature deviation (20°C) is improved by <inline-formula> <tex-math notation="LaTeX">1.9\times </tex-math></inline-formula> compared to the case without replica selection, and by 3-<inline-formula> <tex-math notation="LaTeX">15.4\times </tex-math></inline-formula> compared to prior references with sub-nW consumption.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3234621</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Circuits ; corner-aware ; Corners ; Costs ; Electric potential ; energy harvesting ; Generators ; Metal oxide semiconductors ; Power consumption ; process sensor ; pW power ; Room temperature ; Sensitivity ; Temperature measurement ; Temperature sensors ; Testing ; Testing time ; Transistors ; ultra-low voltage ; Voltage ; Voltage reference ; Wafers</subject><ispartof>IEEE access, 2023, Vol.11, p.3584-3596</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-2ad85eff199d32c23c4198712841a737a98d9dd26032a374ca7a90a3a0275f6b3</citedby><cites>FETCH-LOGICAL-c339t-2ad85eff199d32c23c4198712841a737a98d9dd26032a374ca7a90a3a0275f6b3</cites><orcidid>0000-0002-6480-9218 ; 0000-0002-4702-737X ; 0000-0003-1184-1721 ; 0000-0002-4127-8258 ; 0000-0002-6080-4444 ; 0000-0002-5011-6621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10007824$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Fassio, Luigi</creatorcontrib><creatorcontrib>Lin, Longyang</creatorcontrib><creatorcontrib>De Rose, Raffaele</creatorcontrib><creatorcontrib>Lanuzza, Marco</creatorcontrib><creatorcontrib>Crupi, Felice</creatorcontrib><creatorcontrib>Alioto, Massimo</creatorcontrib><title>Voltage Reference With Corner-Aware Replica Selection/Merging for 1.4-mV Accuracy in Harvested Systems Down to 3.9 pW, 0.2 V</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[This paper introduces a voltage reference design able to operate over the wide supply voltage range from 1.8 V down to 0.2 V, and pW power. To mitigate the effect of global variations (e.g., die-to-die, wafer-to-wafer), the proposed NMOS-only architecture introduces process sensor-driven selection/merging of circuit replicas at boot (or run) time. Being the circuit replicas optimized for different process corners, their selection or merging fundamentally relaxes the traditionally conflicting design tradeoffs that affect the overall voltage accuracy in deep sub-threshold, while not requiring any testing-time trimming or non-volatile memory process option for low-cost applications. Measurements of a 180-nm test chip across 45 dice from different corner wafers demonstrate reliable operation down to 0.2 V with 3.9-pW power consumption at room temperature. The proposed process sensor-driven replica selection is shown to enable 1.6% <inline-formula> <tex-math notation="LaTeX">V_{REF} </tex-math></inline-formula> process sensitivity (i.e., <inline-formula> <tex-math notation="LaTeX">\sigma/\mu) </tex-math></inline-formula>, 34.9-<inline-formula> <tex-math notation="LaTeX">\mu \text{V}/^{\circ }\text{C} </tex-math></inline-formula> (819-ppm/°C) mean temperature coefficient, and 60.7-<inline-formula> <tex-math notation="LaTeX">\mu \text{V} </tex-math></inline-formula>/V (0.14-%/V) mean line sensitivity across process corners. The resulting 1.4-mV overall absolute accuracy of the reference voltage across dice and corner wafers (1-<inline-formula> <tex-math notation="LaTeX">\sigma </tex-math></inline-formula>), voltage fluctuations (0.3 V) and temperature deviation (20°C) is improved by <inline-formula> <tex-math notation="LaTeX">1.9\times </tex-math></inline-formula> compared to the case without replica selection, and by 3-<inline-formula> <tex-math notation="LaTeX">15.4\times </tex-math></inline-formula> compared to prior references with sub-nW consumption.]]></description><subject>Accuracy</subject><subject>Circuits</subject><subject>corner-aware</subject><subject>Corners</subject><subject>Costs</subject><subject>Electric potential</subject><subject>energy harvesting</subject><subject>Generators</subject><subject>Metal oxide semiconductors</subject><subject>Power consumption</subject><subject>process sensor</subject><subject>pW power</subject><subject>Room temperature</subject><subject>Sensitivity</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>Testing</subject><subject>Testing time</subject><subject>Transistors</subject><subject>ultra-low voltage</subject><subject>Voltage</subject><subject>Voltage reference</subject><subject>Wafers</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFq3EAMNaWBhiRf0B4Geq2dGcn2eI6LmyaBlEK23RwHZUbeevF6tmNvw0I-Pt46lOgi8aT3JPGS5KOSmVLSXC7q-mq5zEACZgiYl6DeJaegSpNigeX7N_WH5GIYNnKKaoIKfZo8r0I30prFPTccuXcsHtrxt6hD7DmmiyeKx96uax2JJXfsxjb0l985rtt-LZoQhcrydLsSC-f2kdxBtL24ofiXh5G9WB6mtB3E1_DUizEIzIzYPXwRMgOxOk9OGuoGvnjNZ8mvb1c_65v07sf1bb24Sx2iGVMgXxXcNMoYj-AAXa5MpRVUuSKNmkzljfdQSgRCnTuaIElIEnTRlI94ltzOuj7Qxu5iu6V4sIFa-w8IcW0pjq3r2BayKZQjRHaYe5eTp0o_gq4ag6UvaNL6PGvtYvizn560m7CP_XS-BV0WqsoBYJrCecrFMAyRm_9blbRH1-zsmj26Zl9dm1ifZlbLzG8YUuoKcnwB_KyQYg</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Fassio, Luigi</creator><creator>Lin, Longyang</creator><creator>De Rose, Raffaele</creator><creator>Lanuzza, Marco</creator><creator>Crupi, Felice</creator><creator>Alioto, Massimo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6480-9218</orcidid><orcidid>https://orcid.org/0000-0002-4702-737X</orcidid><orcidid>https://orcid.org/0000-0003-1184-1721</orcidid><orcidid>https://orcid.org/0000-0002-4127-8258</orcidid><orcidid>https://orcid.org/0000-0002-6080-4444</orcidid><orcidid>https://orcid.org/0000-0002-5011-6621</orcidid></search><sort><creationdate>2023</creationdate><title>Voltage Reference With Corner-Aware Replica Selection/Merging for 1.4-mV Accuracy in Harvested Systems Down to 3.9 pW, 0.2 V</title><author>Fassio, Luigi ; Lin, Longyang ; De Rose, Raffaele ; Lanuzza, Marco ; Crupi, Felice ; Alioto, Massimo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-2ad85eff199d32c23c4198712841a737a98d9dd26032a374ca7a90a3a0275f6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Circuits</topic><topic>corner-aware</topic><topic>Corners</topic><topic>Costs</topic><topic>Electric potential</topic><topic>energy harvesting</topic><topic>Generators</topic><topic>Metal oxide semiconductors</topic><topic>Power consumption</topic><topic>process sensor</topic><topic>pW power</topic><topic>Room temperature</topic><topic>Sensitivity</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>Testing</topic><topic>Testing time</topic><topic>Transistors</topic><topic>ultra-low voltage</topic><topic>Voltage</topic><topic>Voltage reference</topic><topic>Wafers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fassio, Luigi</creatorcontrib><creatorcontrib>Lin, Longyang</creatorcontrib><creatorcontrib>De Rose, Raffaele</creatorcontrib><creatorcontrib>Lanuzza, Marco</creatorcontrib><creatorcontrib>Crupi, Felice</creatorcontrib><creatorcontrib>Alioto, Massimo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fassio, Luigi</au><au>Lin, Longyang</au><au>De Rose, Raffaele</au><au>Lanuzza, Marco</au><au>Crupi, Felice</au><au>Alioto, Massimo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voltage Reference With Corner-Aware Replica Selection/Merging for 1.4-mV Accuracy in Harvested Systems Down to 3.9 pW, 0.2 V</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>3584</spage><epage>3596</epage><pages>3584-3596</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[This paper introduces a voltage reference design able to operate over the wide supply voltage range from 1.8 V down to 0.2 V, and pW power. To mitigate the effect of global variations (e.g., die-to-die, wafer-to-wafer), the proposed NMOS-only architecture introduces process sensor-driven selection/merging of circuit replicas at boot (or run) time. Being the circuit replicas optimized for different process corners, their selection or merging fundamentally relaxes the traditionally conflicting design tradeoffs that affect the overall voltage accuracy in deep sub-threshold, while not requiring any testing-time trimming or non-volatile memory process option for low-cost applications. Measurements of a 180-nm test chip across 45 dice from different corner wafers demonstrate reliable operation down to 0.2 V with 3.9-pW power consumption at room temperature. The proposed process sensor-driven replica selection is shown to enable 1.6% <inline-formula> <tex-math notation="LaTeX">V_{REF} </tex-math></inline-formula> process sensitivity (i.e., <inline-formula> <tex-math notation="LaTeX">\sigma/\mu) </tex-math></inline-formula>, 34.9-<inline-formula> <tex-math notation="LaTeX">\mu \text{V}/^{\circ }\text{C} </tex-math></inline-formula> (819-ppm/°C) mean temperature coefficient, and 60.7-<inline-formula> <tex-math notation="LaTeX">\mu \text{V} </tex-math></inline-formula>/V (0.14-%/V) mean line sensitivity across process corners. The resulting 1.4-mV overall absolute accuracy of the reference voltage across dice and corner wafers (1-<inline-formula> <tex-math notation="LaTeX">\sigma </tex-math></inline-formula>), voltage fluctuations (0.3 V) and temperature deviation (20°C) is improved by <inline-formula> <tex-math notation="LaTeX">1.9\times </tex-math></inline-formula> compared to the case without replica selection, and by 3-<inline-formula> <tex-math notation="LaTeX">15.4\times </tex-math></inline-formula> compared to prior references with sub-nW consumption.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3234621</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6480-9218</orcidid><orcidid>https://orcid.org/0000-0002-4702-737X</orcidid><orcidid>https://orcid.org/0000-0003-1184-1721</orcidid><orcidid>https://orcid.org/0000-0002-4127-8258</orcidid><orcidid>https://orcid.org/0000-0002-6080-4444</orcidid><orcidid>https://orcid.org/0000-0002-5011-6621</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023, Vol.11, p.3584-3596
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2023_3234621
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Circuits
corner-aware
Corners
Costs
Electric potential
energy harvesting
Generators
Metal oxide semiconductors
Power consumption
process sensor
pW power
Room temperature
Sensitivity
Temperature measurement
Temperature sensors
Testing
Testing time
Transistors
ultra-low voltage
Voltage
Voltage reference
Wafers
title Voltage Reference With Corner-Aware Replica Selection/Merging for 1.4-mV Accuracy in Harvested Systems Down to 3.9 pW, 0.2 V
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T17%3A40%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voltage%20Reference%20With%20Corner-Aware%20Replica%20Selection/Merging%20for%201.4-mV%20Accuracy%20in%20Harvested%20Systems%20Down%20to%203.9%20pW,%200.2%20V&rft.jtitle=IEEE%20access&rft.au=Fassio,%20Luigi&rft.date=2023&rft.volume=11&rft.spage=3584&rft.epage=3596&rft.pages=3584-3596&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3234621&rft_dat=%3Cproquest_cross%3E2765184222%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2765184222&rft_id=info:pmid/&rft_ieee_id=10007824&rft_doaj_id=oai_doaj_org_article_50f51ca33ec34dc4ada87b278f936d5a&rfr_iscdi=true