Artificial Intelligence Technology in the Agricultural Sector: A Systematic Literature Review
Due to the increasing global population and the growing demand for food worldwide as well as changes in weather conditions and the availability of water, artificial intelligence (AI) such as expert systems, natural language processing, speech recognition, and machine vision have changed not only the...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023, Vol.11, p.171-202 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 202 |
---|---|
container_issue | |
container_start_page | 171 |
container_title | IEEE access |
container_volume | 11 |
creator | Elbasi, Ersin Mostafa, Nour AlArnaout, Zakwan Zreikat, Aymen I. Cina, Elda Varghese, Greeshma Shdefat, Ahmed Topcu, Ahmet E. Abdelbaki, Wiem Mathew, Shinu Zaki, Chamseddine |
description | Due to the increasing global population and the growing demand for food worldwide as well as changes in weather conditions and the availability of water, artificial intelligence (AI) such as expert systems, natural language processing, speech recognition, and machine vision have changed not only the quantity but also the quality of work in the agricultural sector. Researchers and scientists are now moving toward the utilization of new IoT technologies in smart farming to help farmers use AI technology in the development of improved seeds, crop protection, and fertilizers. This will improve farmers' profitability and the overall economy of the country. AI is emerging in three major categories in agriculture, namely soil and crop monitoring, predictive analytics, and agricultural robotics. In this regard, farmers are increasingly adopting the use of sensors and soil sampling to gather data to be used by farm management systems for further investigations and analyses. This article contributes to the field by surveying AI applications in the agricultural sector. It starts with background information on AI, including a discussion of all AI methods utilized in the agricultural industry, such as machine learning, the IoT, expert systems, image processing, and computer vision. A comprehensive literature review is then provided, addressing how researchers have utilized AI applications effectively in data collection using sensors, smart robots, and monitoring systems for crops and irrigation leakage. It is also shown that while utilizing AI applications, quality, productivity, and sustainability are maintained. Finally, we explore the benefits and challenges of AI applications together with a comparison and discussion of several AI methodologies applied in smart farming, such as machine learning, expert systems, and image processing. |
doi_str_mv | 10.1109/ACCESS.2022.3232485 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3232485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9999442</ieee_id><doaj_id>oai_doaj_org_article_6daffafe75b74cb48bf7b30ffc4fff91</doaj_id><sourcerecordid>2760650557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-f666ef87516a744eb17459bf797c2806d54b7c836238e2f5f85e3a748ee79f8b3</originalsourceid><addsrcrecordid>eNpNkU9LJDEQxRtxQXH9BF4CnmdM5397awbXHRhYcNyjhHSmaszQdjSdWZlvb2ZbxLpUUfzeq4RXVVc1ndc1bW7axeJuvZ4zyticM86EkSfVOatVM-OSq9Nv81l1OY47WsqUldTn1VObcsDgg-vJcsjQ92ELgwfyCP55iH3cHkgYSH4G0m5T8Ps-71Nh1-BzTLekJevDmOHF5eDJKmRIrgBAHuBfgPef1Q90_QiXn_2i-vvr7nHxe7b6c79ctKuZF9TkGSqlAI2WtXJaCOhqLWTToW60Z4aqjRSd9oYrxg0wlGgk8EIaAN2g6fhFtZx8N9Ht7GsKLy4dbHTB_l_EtLWu_NP3YNXGIToELTstfCdMOdNxiugFIjZ18bqevF5TfNvDmO0u7tNQnm-ZVlRJKqUuFJ8on-I4JsCvqzW1x1jsFIs9xmI_Yymqq0kVAOBL0ZQSgvEPEcuJ7g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760650557</pqid></control><display><type>article</type><title>Artificial Intelligence Technology in the Agricultural Sector: A Systematic Literature Review</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Elbasi, Ersin ; Mostafa, Nour ; AlArnaout, Zakwan ; Zreikat, Aymen I. ; Cina, Elda ; Varghese, Greeshma ; Shdefat, Ahmed ; Topcu, Ahmet E. ; Abdelbaki, Wiem ; Mathew, Shinu ; Zaki, Chamseddine</creator><creatorcontrib>Elbasi, Ersin ; Mostafa, Nour ; AlArnaout, Zakwan ; Zreikat, Aymen I. ; Cina, Elda ; Varghese, Greeshma ; Shdefat, Ahmed ; Topcu, Ahmet E. ; Abdelbaki, Wiem ; Mathew, Shinu ; Zaki, Chamseddine</creatorcontrib><description>Due to the increasing global population and the growing demand for food worldwide as well as changes in weather conditions and the availability of water, artificial intelligence (AI) such as expert systems, natural language processing, speech recognition, and machine vision have changed not only the quantity but also the quality of work in the agricultural sector. Researchers and scientists are now moving toward the utilization of new IoT technologies in smart farming to help farmers use AI technology in the development of improved seeds, crop protection, and fertilizers. This will improve farmers' profitability and the overall economy of the country. AI is emerging in three major categories in agriculture, namely soil and crop monitoring, predictive analytics, and agricultural robotics. In this regard, farmers are increasingly adopting the use of sensors and soil sampling to gather data to be used by farm management systems for further investigations and analyses. This article contributes to the field by surveying AI applications in the agricultural sector. It starts with background information on AI, including a discussion of all AI methods utilized in the agricultural industry, such as machine learning, the IoT, expert systems, image processing, and computer vision. A comprehensive literature review is then provided, addressing how researchers have utilized AI applications effectively in data collection using sensors, smart robots, and monitoring systems for crops and irrigation leakage. It is also shown that while utilizing AI applications, quality, productivity, and sustainability are maintained. Finally, we explore the benefits and challenges of AI applications together with a comparison and discussion of several AI methodologies applied in smart farming, such as machine learning, expert systems, and image processing.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3232485</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Agriculture ; Artificial intelligence ; Artificial intelligence applications ; Computer vision ; Crops ; Data collection ; Deep learning ; Digital agriculture ; Expert systems ; Farmers ; Farming ; Farms ; Image processing ; Intelligent sensors ; Internet of Things ; Literature reviews ; Machine learning ; Machine vision ; Management systems ; Monitoring ; Natural language processing ; Profitability ; Robotics ; Seeds ; Sensors ; smart farming ; Smart sensors ; Soil sampling ; Speech recognition ; System effectiveness ; Weather</subject><ispartof>IEEE access, 2023, Vol.11, p.171-202</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-f666ef87516a744eb17459bf797c2806d54b7c836238e2f5f85e3a748ee79f8b3</citedby><cites>FETCH-LOGICAL-c408t-f666ef87516a744eb17459bf797c2806d54b7c836238e2f5f85e3a748ee79f8b3</cites><orcidid>0000-0001-6339-1502 ; 0000-0002-8603-1435 ; 0000-0003-2221-2170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9999442$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Elbasi, Ersin</creatorcontrib><creatorcontrib>Mostafa, Nour</creatorcontrib><creatorcontrib>AlArnaout, Zakwan</creatorcontrib><creatorcontrib>Zreikat, Aymen I.</creatorcontrib><creatorcontrib>Cina, Elda</creatorcontrib><creatorcontrib>Varghese, Greeshma</creatorcontrib><creatorcontrib>Shdefat, Ahmed</creatorcontrib><creatorcontrib>Topcu, Ahmet E.</creatorcontrib><creatorcontrib>Abdelbaki, Wiem</creatorcontrib><creatorcontrib>Mathew, Shinu</creatorcontrib><creatorcontrib>Zaki, Chamseddine</creatorcontrib><title>Artificial Intelligence Technology in the Agricultural Sector: A Systematic Literature Review</title><title>IEEE access</title><addtitle>Access</addtitle><description>Due to the increasing global population and the growing demand for food worldwide as well as changes in weather conditions and the availability of water, artificial intelligence (AI) such as expert systems, natural language processing, speech recognition, and machine vision have changed not only the quantity but also the quality of work in the agricultural sector. Researchers and scientists are now moving toward the utilization of new IoT technologies in smart farming to help farmers use AI technology in the development of improved seeds, crop protection, and fertilizers. This will improve farmers' profitability and the overall economy of the country. AI is emerging in three major categories in agriculture, namely soil and crop monitoring, predictive analytics, and agricultural robotics. In this regard, farmers are increasingly adopting the use of sensors and soil sampling to gather data to be used by farm management systems for further investigations and analyses. This article contributes to the field by surveying AI applications in the agricultural sector. It starts with background information on AI, including a discussion of all AI methods utilized in the agricultural industry, such as machine learning, the IoT, expert systems, image processing, and computer vision. A comprehensive literature review is then provided, addressing how researchers have utilized AI applications effectively in data collection using sensors, smart robots, and monitoring systems for crops and irrigation leakage. It is also shown that while utilizing AI applications, quality, productivity, and sustainability are maintained. Finally, we explore the benefits and challenges of AI applications together with a comparison and discussion of several AI methodologies applied in smart farming, such as machine learning, expert systems, and image processing.</description><subject>Agriculture</subject><subject>Artificial intelligence</subject><subject>Artificial intelligence applications</subject><subject>Computer vision</subject><subject>Crops</subject><subject>Data collection</subject><subject>Deep learning</subject><subject>Digital agriculture</subject><subject>Expert systems</subject><subject>Farmers</subject><subject>Farming</subject><subject>Farms</subject><subject>Image processing</subject><subject>Intelligent sensors</subject><subject>Internet of Things</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Machine vision</subject><subject>Management systems</subject><subject>Monitoring</subject><subject>Natural language processing</subject><subject>Profitability</subject><subject>Robotics</subject><subject>Seeds</subject><subject>Sensors</subject><subject>smart farming</subject><subject>Smart sensors</subject><subject>Soil sampling</subject><subject>Speech recognition</subject><subject>System effectiveness</subject><subject>Weather</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9LJDEQxRtxQXH9BF4CnmdM5397awbXHRhYcNyjhHSmaszQdjSdWZlvb2ZbxLpUUfzeq4RXVVc1ndc1bW7axeJuvZ4zyticM86EkSfVOatVM-OSq9Nv81l1OY47WsqUldTn1VObcsDgg-vJcsjQ92ELgwfyCP55iH3cHkgYSH4G0m5T8Ps-71Nh1-BzTLekJevDmOHF5eDJKmRIrgBAHuBfgPef1Q90_QiXn_2i-vvr7nHxe7b6c79ctKuZF9TkGSqlAI2WtXJaCOhqLWTToW60Z4aqjRSd9oYrxg0wlGgk8EIaAN2g6fhFtZx8N9Ht7GsKLy4dbHTB_l_EtLWu_NP3YNXGIToELTstfCdMOdNxiugFIjZ18bqevF5TfNvDmO0u7tNQnm-ZVlRJKqUuFJ8on-I4JsCvqzW1x1jsFIs9xmI_Yymqq0kVAOBL0ZQSgvEPEcuJ7g</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Elbasi, Ersin</creator><creator>Mostafa, Nour</creator><creator>AlArnaout, Zakwan</creator><creator>Zreikat, Aymen I.</creator><creator>Cina, Elda</creator><creator>Varghese, Greeshma</creator><creator>Shdefat, Ahmed</creator><creator>Topcu, Ahmet E.</creator><creator>Abdelbaki, Wiem</creator><creator>Mathew, Shinu</creator><creator>Zaki, Chamseddine</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6339-1502</orcidid><orcidid>https://orcid.org/0000-0002-8603-1435</orcidid><orcidid>https://orcid.org/0000-0003-2221-2170</orcidid></search><sort><creationdate>2023</creationdate><title>Artificial Intelligence Technology in the Agricultural Sector: A Systematic Literature Review</title><author>Elbasi, Ersin ; Mostafa, Nour ; AlArnaout, Zakwan ; Zreikat, Aymen I. ; Cina, Elda ; Varghese, Greeshma ; Shdefat, Ahmed ; Topcu, Ahmet E. ; Abdelbaki, Wiem ; Mathew, Shinu ; Zaki, Chamseddine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-f666ef87516a744eb17459bf797c2806d54b7c836238e2f5f85e3a748ee79f8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agriculture</topic><topic>Artificial intelligence</topic><topic>Artificial intelligence applications</topic><topic>Computer vision</topic><topic>Crops</topic><topic>Data collection</topic><topic>Deep learning</topic><topic>Digital agriculture</topic><topic>Expert systems</topic><topic>Farmers</topic><topic>Farming</topic><topic>Farms</topic><topic>Image processing</topic><topic>Intelligent sensors</topic><topic>Internet of Things</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Machine vision</topic><topic>Management systems</topic><topic>Monitoring</topic><topic>Natural language processing</topic><topic>Profitability</topic><topic>Robotics</topic><topic>Seeds</topic><topic>Sensors</topic><topic>smart farming</topic><topic>Smart sensors</topic><topic>Soil sampling</topic><topic>Speech recognition</topic><topic>System effectiveness</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elbasi, Ersin</creatorcontrib><creatorcontrib>Mostafa, Nour</creatorcontrib><creatorcontrib>AlArnaout, Zakwan</creatorcontrib><creatorcontrib>Zreikat, Aymen I.</creatorcontrib><creatorcontrib>Cina, Elda</creatorcontrib><creatorcontrib>Varghese, Greeshma</creatorcontrib><creatorcontrib>Shdefat, Ahmed</creatorcontrib><creatorcontrib>Topcu, Ahmet E.</creatorcontrib><creatorcontrib>Abdelbaki, Wiem</creatorcontrib><creatorcontrib>Mathew, Shinu</creatorcontrib><creatorcontrib>Zaki, Chamseddine</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elbasi, Ersin</au><au>Mostafa, Nour</au><au>AlArnaout, Zakwan</au><au>Zreikat, Aymen I.</au><au>Cina, Elda</au><au>Varghese, Greeshma</au><au>Shdefat, Ahmed</au><au>Topcu, Ahmet E.</au><au>Abdelbaki, Wiem</au><au>Mathew, Shinu</au><au>Zaki, Chamseddine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence Technology in the Agricultural Sector: A Systematic Literature Review</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>171</spage><epage>202</epage><pages>171-202</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Due to the increasing global population and the growing demand for food worldwide as well as changes in weather conditions and the availability of water, artificial intelligence (AI) such as expert systems, natural language processing, speech recognition, and machine vision have changed not only the quantity but also the quality of work in the agricultural sector. Researchers and scientists are now moving toward the utilization of new IoT technologies in smart farming to help farmers use AI technology in the development of improved seeds, crop protection, and fertilizers. This will improve farmers' profitability and the overall economy of the country. AI is emerging in three major categories in agriculture, namely soil and crop monitoring, predictive analytics, and agricultural robotics. In this regard, farmers are increasingly adopting the use of sensors and soil sampling to gather data to be used by farm management systems for further investigations and analyses. This article contributes to the field by surveying AI applications in the agricultural sector. It starts with background information on AI, including a discussion of all AI methods utilized in the agricultural industry, such as machine learning, the IoT, expert systems, image processing, and computer vision. A comprehensive literature review is then provided, addressing how researchers have utilized AI applications effectively in data collection using sensors, smart robots, and monitoring systems for crops and irrigation leakage. It is also shown that while utilizing AI applications, quality, productivity, and sustainability are maintained. Finally, we explore the benefits and challenges of AI applications together with a comparison and discussion of several AI methodologies applied in smart farming, such as machine learning, expert systems, and image processing.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3232485</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0001-6339-1502</orcidid><orcidid>https://orcid.org/0000-0002-8603-1435</orcidid><orcidid>https://orcid.org/0000-0003-2221-2170</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023, Vol.11, p.171-202 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2022_3232485 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Agriculture Artificial intelligence Artificial intelligence applications Computer vision Crops Data collection Deep learning Digital agriculture Expert systems Farmers Farming Farms Image processing Intelligent sensors Internet of Things Literature reviews Machine learning Machine vision Management systems Monitoring Natural language processing Profitability Robotics Seeds Sensors smart farming Smart sensors Soil sampling Speech recognition System effectiveness Weather |
title | Artificial Intelligence Technology in the Agricultural Sector: A Systematic Literature Review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20Technology%20in%20the%20Agricultural%20Sector:%20A%20Systematic%20Literature%20Review&rft.jtitle=IEEE%20access&rft.au=Elbasi,%20Ersin&rft.date=2023&rft.volume=11&rft.spage=171&rft.epage=202&rft.pages=171-202&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3232485&rft_dat=%3Cproquest_cross%3E2760650557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760650557&rft_id=info:pmid/&rft_ieee_id=9999442&rft_doaj_id=oai_doaj_org_article_6daffafe75b74cb48bf7b30ffc4fff91&rfr_iscdi=true |