Artificial Intelligence Technology in the Agricultural Sector: A Systematic Literature Review

Due to the increasing global population and the growing demand for food worldwide as well as changes in weather conditions and the availability of water, artificial intelligence (AI) such as expert systems, natural language processing, speech recognition, and machine vision have changed not only the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023, Vol.11, p.171-202
Hauptverfasser: Elbasi, Ersin, Mostafa, Nour, AlArnaout, Zakwan, Zreikat, Aymen I., Cina, Elda, Varghese, Greeshma, Shdefat, Ahmed, Topcu, Ahmet E., Abdelbaki, Wiem, Mathew, Shinu, Zaki, Chamseddine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 202
container_issue
container_start_page 171
container_title IEEE access
container_volume 11
creator Elbasi, Ersin
Mostafa, Nour
AlArnaout, Zakwan
Zreikat, Aymen I.
Cina, Elda
Varghese, Greeshma
Shdefat, Ahmed
Topcu, Ahmet E.
Abdelbaki, Wiem
Mathew, Shinu
Zaki, Chamseddine
description Due to the increasing global population and the growing demand for food worldwide as well as changes in weather conditions and the availability of water, artificial intelligence (AI) such as expert systems, natural language processing, speech recognition, and machine vision have changed not only the quantity but also the quality of work in the agricultural sector. Researchers and scientists are now moving toward the utilization of new IoT technologies in smart farming to help farmers use AI technology in the development of improved seeds, crop protection, and fertilizers. This will improve farmers' profitability and the overall economy of the country. AI is emerging in three major categories in agriculture, namely soil and crop monitoring, predictive analytics, and agricultural robotics. In this regard, farmers are increasingly adopting the use of sensors and soil sampling to gather data to be used by farm management systems for further investigations and analyses. This article contributes to the field by surveying AI applications in the agricultural sector. It starts with background information on AI, including a discussion of all AI methods utilized in the agricultural industry, such as machine learning, the IoT, expert systems, image processing, and computer vision. A comprehensive literature review is then provided, addressing how researchers have utilized AI applications effectively in data collection using sensors, smart robots, and monitoring systems for crops and irrigation leakage. It is also shown that while utilizing AI applications, quality, productivity, and sustainability are maintained. Finally, we explore the benefits and challenges of AI applications together with a comparison and discussion of several AI methodologies applied in smart farming, such as machine learning, expert systems, and image processing.
doi_str_mv 10.1109/ACCESS.2022.3232485
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3232485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9999442</ieee_id><doaj_id>oai_doaj_org_article_6daffafe75b74cb48bf7b30ffc4fff91</doaj_id><sourcerecordid>2760650557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-f666ef87516a744eb17459bf797c2806d54b7c836238e2f5f85e3a748ee79f8b3</originalsourceid><addsrcrecordid>eNpNkU9LJDEQxRtxQXH9BF4CnmdM5397awbXHRhYcNyjhHSmaszQdjSdWZlvb2ZbxLpUUfzeq4RXVVc1ndc1bW7axeJuvZ4zyticM86EkSfVOatVM-OSq9Nv81l1OY47WsqUldTn1VObcsDgg-vJcsjQ92ELgwfyCP55iH3cHkgYSH4G0m5T8Ps-71Nh1-BzTLekJevDmOHF5eDJKmRIrgBAHuBfgPef1Q90_QiXn_2i-vvr7nHxe7b6c79ctKuZF9TkGSqlAI2WtXJaCOhqLWTToW60Z4aqjRSd9oYrxg0wlGgk8EIaAN2g6fhFtZx8N9Ht7GsKLy4dbHTB_l_EtLWu_NP3YNXGIToELTstfCdMOdNxiugFIjZ18bqevF5TfNvDmO0u7tNQnm-ZVlRJKqUuFJ8on-I4JsCvqzW1x1jsFIs9xmI_Yymqq0kVAOBL0ZQSgvEPEcuJ7g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760650557</pqid></control><display><type>article</type><title>Artificial Intelligence Technology in the Agricultural Sector: A Systematic Literature Review</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Elbasi, Ersin ; Mostafa, Nour ; AlArnaout, Zakwan ; Zreikat, Aymen I. ; Cina, Elda ; Varghese, Greeshma ; Shdefat, Ahmed ; Topcu, Ahmet E. ; Abdelbaki, Wiem ; Mathew, Shinu ; Zaki, Chamseddine</creator><creatorcontrib>Elbasi, Ersin ; Mostafa, Nour ; AlArnaout, Zakwan ; Zreikat, Aymen I. ; Cina, Elda ; Varghese, Greeshma ; Shdefat, Ahmed ; Topcu, Ahmet E. ; Abdelbaki, Wiem ; Mathew, Shinu ; Zaki, Chamseddine</creatorcontrib><description>Due to the increasing global population and the growing demand for food worldwide as well as changes in weather conditions and the availability of water, artificial intelligence (AI) such as expert systems, natural language processing, speech recognition, and machine vision have changed not only the quantity but also the quality of work in the agricultural sector. Researchers and scientists are now moving toward the utilization of new IoT technologies in smart farming to help farmers use AI technology in the development of improved seeds, crop protection, and fertilizers. This will improve farmers' profitability and the overall economy of the country. AI is emerging in three major categories in agriculture, namely soil and crop monitoring, predictive analytics, and agricultural robotics. In this regard, farmers are increasingly adopting the use of sensors and soil sampling to gather data to be used by farm management systems for further investigations and analyses. This article contributes to the field by surveying AI applications in the agricultural sector. It starts with background information on AI, including a discussion of all AI methods utilized in the agricultural industry, such as machine learning, the IoT, expert systems, image processing, and computer vision. A comprehensive literature review is then provided, addressing how researchers have utilized AI applications effectively in data collection using sensors, smart robots, and monitoring systems for crops and irrigation leakage. It is also shown that while utilizing AI applications, quality, productivity, and sustainability are maintained. Finally, we explore the benefits and challenges of AI applications together with a comparison and discussion of several AI methodologies applied in smart farming, such as machine learning, expert systems, and image processing.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3232485</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Agriculture ; Artificial intelligence ; Artificial intelligence applications ; Computer vision ; Crops ; Data collection ; Deep learning ; Digital agriculture ; Expert systems ; Farmers ; Farming ; Farms ; Image processing ; Intelligent sensors ; Internet of Things ; Literature reviews ; Machine learning ; Machine vision ; Management systems ; Monitoring ; Natural language processing ; Profitability ; Robotics ; Seeds ; Sensors ; smart farming ; Smart sensors ; Soil sampling ; Speech recognition ; System effectiveness ; Weather</subject><ispartof>IEEE access, 2023, Vol.11, p.171-202</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-f666ef87516a744eb17459bf797c2806d54b7c836238e2f5f85e3a748ee79f8b3</citedby><cites>FETCH-LOGICAL-c408t-f666ef87516a744eb17459bf797c2806d54b7c836238e2f5f85e3a748ee79f8b3</cites><orcidid>0000-0001-6339-1502 ; 0000-0002-8603-1435 ; 0000-0003-2221-2170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9999442$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Elbasi, Ersin</creatorcontrib><creatorcontrib>Mostafa, Nour</creatorcontrib><creatorcontrib>AlArnaout, Zakwan</creatorcontrib><creatorcontrib>Zreikat, Aymen I.</creatorcontrib><creatorcontrib>Cina, Elda</creatorcontrib><creatorcontrib>Varghese, Greeshma</creatorcontrib><creatorcontrib>Shdefat, Ahmed</creatorcontrib><creatorcontrib>Topcu, Ahmet E.</creatorcontrib><creatorcontrib>Abdelbaki, Wiem</creatorcontrib><creatorcontrib>Mathew, Shinu</creatorcontrib><creatorcontrib>Zaki, Chamseddine</creatorcontrib><title>Artificial Intelligence Technology in the Agricultural Sector: A Systematic Literature Review</title><title>IEEE access</title><addtitle>Access</addtitle><description>Due to the increasing global population and the growing demand for food worldwide as well as changes in weather conditions and the availability of water, artificial intelligence (AI) such as expert systems, natural language processing, speech recognition, and machine vision have changed not only the quantity but also the quality of work in the agricultural sector. Researchers and scientists are now moving toward the utilization of new IoT technologies in smart farming to help farmers use AI technology in the development of improved seeds, crop protection, and fertilizers. This will improve farmers' profitability and the overall economy of the country. AI is emerging in three major categories in agriculture, namely soil and crop monitoring, predictive analytics, and agricultural robotics. In this regard, farmers are increasingly adopting the use of sensors and soil sampling to gather data to be used by farm management systems for further investigations and analyses. This article contributes to the field by surveying AI applications in the agricultural sector. It starts with background information on AI, including a discussion of all AI methods utilized in the agricultural industry, such as machine learning, the IoT, expert systems, image processing, and computer vision. A comprehensive literature review is then provided, addressing how researchers have utilized AI applications effectively in data collection using sensors, smart robots, and monitoring systems for crops and irrigation leakage. It is also shown that while utilizing AI applications, quality, productivity, and sustainability are maintained. Finally, we explore the benefits and challenges of AI applications together with a comparison and discussion of several AI methodologies applied in smart farming, such as machine learning, expert systems, and image processing.</description><subject>Agriculture</subject><subject>Artificial intelligence</subject><subject>Artificial intelligence applications</subject><subject>Computer vision</subject><subject>Crops</subject><subject>Data collection</subject><subject>Deep learning</subject><subject>Digital agriculture</subject><subject>Expert systems</subject><subject>Farmers</subject><subject>Farming</subject><subject>Farms</subject><subject>Image processing</subject><subject>Intelligent sensors</subject><subject>Internet of Things</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Machine vision</subject><subject>Management systems</subject><subject>Monitoring</subject><subject>Natural language processing</subject><subject>Profitability</subject><subject>Robotics</subject><subject>Seeds</subject><subject>Sensors</subject><subject>smart farming</subject><subject>Smart sensors</subject><subject>Soil sampling</subject><subject>Speech recognition</subject><subject>System effectiveness</subject><subject>Weather</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9LJDEQxRtxQXH9BF4CnmdM5397awbXHRhYcNyjhHSmaszQdjSdWZlvb2ZbxLpUUfzeq4RXVVc1ndc1bW7axeJuvZ4zyticM86EkSfVOatVM-OSq9Nv81l1OY47WsqUldTn1VObcsDgg-vJcsjQ92ELgwfyCP55iH3cHkgYSH4G0m5T8Ps-71Nh1-BzTLekJevDmOHF5eDJKmRIrgBAHuBfgPef1Q90_QiXn_2i-vvr7nHxe7b6c79ctKuZF9TkGSqlAI2WtXJaCOhqLWTToW60Z4aqjRSd9oYrxg0wlGgk8EIaAN2g6fhFtZx8N9Ht7GsKLy4dbHTB_l_EtLWu_NP3YNXGIToELTstfCdMOdNxiugFIjZ18bqevF5TfNvDmO0u7tNQnm-ZVlRJKqUuFJ8on-I4JsCvqzW1x1jsFIs9xmI_Yymqq0kVAOBL0ZQSgvEPEcuJ7g</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Elbasi, Ersin</creator><creator>Mostafa, Nour</creator><creator>AlArnaout, Zakwan</creator><creator>Zreikat, Aymen I.</creator><creator>Cina, Elda</creator><creator>Varghese, Greeshma</creator><creator>Shdefat, Ahmed</creator><creator>Topcu, Ahmet E.</creator><creator>Abdelbaki, Wiem</creator><creator>Mathew, Shinu</creator><creator>Zaki, Chamseddine</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6339-1502</orcidid><orcidid>https://orcid.org/0000-0002-8603-1435</orcidid><orcidid>https://orcid.org/0000-0003-2221-2170</orcidid></search><sort><creationdate>2023</creationdate><title>Artificial Intelligence Technology in the Agricultural Sector: A Systematic Literature Review</title><author>Elbasi, Ersin ; Mostafa, Nour ; AlArnaout, Zakwan ; Zreikat, Aymen I. ; Cina, Elda ; Varghese, Greeshma ; Shdefat, Ahmed ; Topcu, Ahmet E. ; Abdelbaki, Wiem ; Mathew, Shinu ; Zaki, Chamseddine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-f666ef87516a744eb17459bf797c2806d54b7c836238e2f5f85e3a748ee79f8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agriculture</topic><topic>Artificial intelligence</topic><topic>Artificial intelligence applications</topic><topic>Computer vision</topic><topic>Crops</topic><topic>Data collection</topic><topic>Deep learning</topic><topic>Digital agriculture</topic><topic>Expert systems</topic><topic>Farmers</topic><topic>Farming</topic><topic>Farms</topic><topic>Image processing</topic><topic>Intelligent sensors</topic><topic>Internet of Things</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Machine vision</topic><topic>Management systems</topic><topic>Monitoring</topic><topic>Natural language processing</topic><topic>Profitability</topic><topic>Robotics</topic><topic>Seeds</topic><topic>Sensors</topic><topic>smart farming</topic><topic>Smart sensors</topic><topic>Soil sampling</topic><topic>Speech recognition</topic><topic>System effectiveness</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elbasi, Ersin</creatorcontrib><creatorcontrib>Mostafa, Nour</creatorcontrib><creatorcontrib>AlArnaout, Zakwan</creatorcontrib><creatorcontrib>Zreikat, Aymen I.</creatorcontrib><creatorcontrib>Cina, Elda</creatorcontrib><creatorcontrib>Varghese, Greeshma</creatorcontrib><creatorcontrib>Shdefat, Ahmed</creatorcontrib><creatorcontrib>Topcu, Ahmet E.</creatorcontrib><creatorcontrib>Abdelbaki, Wiem</creatorcontrib><creatorcontrib>Mathew, Shinu</creatorcontrib><creatorcontrib>Zaki, Chamseddine</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elbasi, Ersin</au><au>Mostafa, Nour</au><au>AlArnaout, Zakwan</au><au>Zreikat, Aymen I.</au><au>Cina, Elda</au><au>Varghese, Greeshma</au><au>Shdefat, Ahmed</au><au>Topcu, Ahmet E.</au><au>Abdelbaki, Wiem</au><au>Mathew, Shinu</au><au>Zaki, Chamseddine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence Technology in the Agricultural Sector: A Systematic Literature Review</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>171</spage><epage>202</epage><pages>171-202</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Due to the increasing global population and the growing demand for food worldwide as well as changes in weather conditions and the availability of water, artificial intelligence (AI) such as expert systems, natural language processing, speech recognition, and machine vision have changed not only the quantity but also the quality of work in the agricultural sector. Researchers and scientists are now moving toward the utilization of new IoT technologies in smart farming to help farmers use AI technology in the development of improved seeds, crop protection, and fertilizers. This will improve farmers' profitability and the overall economy of the country. AI is emerging in three major categories in agriculture, namely soil and crop monitoring, predictive analytics, and agricultural robotics. In this regard, farmers are increasingly adopting the use of sensors and soil sampling to gather data to be used by farm management systems for further investigations and analyses. This article contributes to the field by surveying AI applications in the agricultural sector. It starts with background information on AI, including a discussion of all AI methods utilized in the agricultural industry, such as machine learning, the IoT, expert systems, image processing, and computer vision. A comprehensive literature review is then provided, addressing how researchers have utilized AI applications effectively in data collection using sensors, smart robots, and monitoring systems for crops and irrigation leakage. It is also shown that while utilizing AI applications, quality, productivity, and sustainability are maintained. Finally, we explore the benefits and challenges of AI applications together with a comparison and discussion of several AI methodologies applied in smart farming, such as machine learning, expert systems, and image processing.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3232485</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0001-6339-1502</orcidid><orcidid>https://orcid.org/0000-0002-8603-1435</orcidid><orcidid>https://orcid.org/0000-0003-2221-2170</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023, Vol.11, p.171-202
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2022_3232485
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Agriculture
Artificial intelligence
Artificial intelligence applications
Computer vision
Crops
Data collection
Deep learning
Digital agriculture
Expert systems
Farmers
Farming
Farms
Image processing
Intelligent sensors
Internet of Things
Literature reviews
Machine learning
Machine vision
Management systems
Monitoring
Natural language processing
Profitability
Robotics
Seeds
Sensors
smart farming
Smart sensors
Soil sampling
Speech recognition
System effectiveness
Weather
title Artificial Intelligence Technology in the Agricultural Sector: A Systematic Literature Review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20Technology%20in%20the%20Agricultural%20Sector:%20A%20Systematic%20Literature%20Review&rft.jtitle=IEEE%20access&rft.au=Elbasi,%20Ersin&rft.date=2023&rft.volume=11&rft.spage=171&rft.epage=202&rft.pages=171-202&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3232485&rft_dat=%3Cproquest_cross%3E2760650557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760650557&rft_id=info:pmid/&rft_ieee_id=9999442&rft_doaj_id=oai_doaj_org_article_6daffafe75b74cb48bf7b30ffc4fff91&rfr_iscdi=true