Efficient Detection of Spam over Internet Telephony by Machine Learning Algorithms

Recent trends show a growing interest in VoIP services and indicate that guaranteeing security in VoIP services and preventing hacker communities from attacking telecommunication solutions is a challenging task. Spam over Internet Telephony (SPIT) is a type of attack which is a significant detriment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022-01, Vol.10, p.1-1
Hauptverfasser: Behan, Ladislav, Rozhon, Jan, Safarik, Jakub, Rezac, Filip, Voznak, Miroslav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 10
creator Behan, Ladislav
Rozhon, Jan
Safarik, Jakub
Rezac, Filip
Voznak, Miroslav
description Recent trends show a growing interest in VoIP services and indicate that guaranteeing security in VoIP services and preventing hacker communities from attacking telecommunication solutions is a challenging task. Spam over Internet Telephony (SPIT) is a type of attack which is a significant detriment to the user's experience. A number of techniques have been produced to detect SPIT calls. We reviewed these techniques and have proposed a new approach for quick, efficient and highly accurate detection of SPIT calls using neural networks and novel call parameters. The performance of this system was compared to other state-of-art machine learning algorithms on a real-world dataset, which has been published online and is publicly available. The results of the study demonstrated that new parameters may help improve the effectiveness and accuracy of applied machine learning algorithms. The study explored the entire process of designing a SPIT detection algorithm, including data collection and processing, defining suitable parameters, and final evaluation of machine learning models.
doi_str_mv 10.1109/ACCESS.2022.3231384
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3231384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9996400</ieee_id><doaj_id>oai_doaj_org_article_d1a2df42f17c4d5da9906fbfce60b82e</doaj_id><sourcerecordid>2759387464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-4a1ecbd6eaead1d0b66c13387d9b22b2ba51c9ae49d358190f873a79240bbe673</originalsourceid><addsrcrecordid>eNpNUU1LAzEUXERBUX-Bl4Dn1nxtdnMstWqhIlg9h3y8tCltUrNR6L9364r4Lu8xzMwbmKq6IXhMCJZ3k-l0tlyOKaZ0zCgjrOUn1QUlQo5YzcTpv_u8uu66De6n7aG6uaheZ94HGyAWdA8FbAkpouTRcq93KH1BRvNYIEco6A22sF-neEDmgJ61XYcIaAE6xxBXaLJdpRzKetddVWdebzu4_t2X1fvD7G36NFq8PM6nk8XIsrotI64JWOMEaNCOOGyEsISxtnHSUGqo0TWxUgOXrucTiX3bMN1IyrExIBp2Wc0HX5f0Ru1z2Ol8UEkH9QOkvFI6l2C3oBzR1HlOPWksd7XTUmLhjbcgsGkp9F63g9c-p49P6IrapM8c-_iKNrXsU3HBexYbWDanrsvg_74SrI5dqKELdexC_XbRq24GVQCAP4WUUnCM2TdCJYWw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759387464</pqid></control><display><type>article</type><title>Efficient Detection of Spam over Internet Telephony by Machine Learning Algorithms</title><source>Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Behan, Ladislav ; Rozhon, Jan ; Safarik, Jakub ; Rezac, Filip ; Voznak, Miroslav</creator><creatorcontrib>Behan, Ladislav ; Rozhon, Jan ; Safarik, Jakub ; Rezac, Filip ; Voznak, Miroslav</creatorcontrib><description>Recent trends show a growing interest in VoIP services and indicate that guaranteeing security in VoIP services and preventing hacker communities from attacking telecommunication solutions is a challenging task. Spam over Internet Telephony (SPIT) is a type of attack which is a significant detriment to the user's experience. A number of techniques have been produced to detect SPIT calls. We reviewed these techniques and have proposed a new approach for quick, efficient and highly accurate detection of SPIT calls using neural networks and novel call parameters. The performance of this system was compared to other state-of-art machine learning algorithms on a real-world dataset, which has been published online and is publicly available. The results of the study demonstrated that new parameters may help improve the effectiveness and accuracy of applied machine learning algorithms. The study explored the entire process of designing a SPIT detection algorithm, including data collection and processing, defining suitable parameters, and final evaluation of machine learning models.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3231384</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Data mining ; Internet ; Internet telephony ; Machine learning ; neural network ; Neural networks ; Parameters ; SIP ; spam ; SPIT ; Telephony ; VoIP</subject><ispartof>IEEE access, 2022-01, Vol.10, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-4a1ecbd6eaead1d0b66c13387d9b22b2ba51c9ae49d358190f873a79240bbe673</cites><orcidid>0000-0001-5135-7980 ; 0000-0001-6147-1947 ; 0000-0002-3360-2302</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9996400$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27612,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Behan, Ladislav</creatorcontrib><creatorcontrib>Rozhon, Jan</creatorcontrib><creatorcontrib>Safarik, Jakub</creatorcontrib><creatorcontrib>Rezac, Filip</creatorcontrib><creatorcontrib>Voznak, Miroslav</creatorcontrib><title>Efficient Detection of Spam over Internet Telephony by Machine Learning Algorithms</title><title>IEEE access</title><addtitle>Access</addtitle><description>Recent trends show a growing interest in VoIP services and indicate that guaranteeing security in VoIP services and preventing hacker communities from attacking telecommunication solutions is a challenging task. Spam over Internet Telephony (SPIT) is a type of attack which is a significant detriment to the user's experience. A number of techniques have been produced to detect SPIT calls. We reviewed these techniques and have proposed a new approach for quick, efficient and highly accurate detection of SPIT calls using neural networks and novel call parameters. The performance of this system was compared to other state-of-art machine learning algorithms on a real-world dataset, which has been published online and is publicly available. The results of the study demonstrated that new parameters may help improve the effectiveness and accuracy of applied machine learning algorithms. The study explored the entire process of designing a SPIT detection algorithm, including data collection and processing, defining suitable parameters, and final evaluation of machine learning models.</description><subject>Algorithms</subject><subject>Data mining</subject><subject>Internet</subject><subject>Internet telephony</subject><subject>Machine learning</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>SIP</subject><subject>spam</subject><subject>SPIT</subject><subject>Telephony</subject><subject>VoIP</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEUXERBUX-Bl4Dn1nxtdnMstWqhIlg9h3y8tCltUrNR6L9364r4Lu8xzMwbmKq6IXhMCJZ3k-l0tlyOKaZ0zCgjrOUn1QUlQo5YzcTpv_u8uu66De6n7aG6uaheZ94HGyAWdA8FbAkpouTRcq93KH1BRvNYIEco6A22sF-neEDmgJ61XYcIaAE6xxBXaLJdpRzKetddVWdebzu4_t2X1fvD7G36NFq8PM6nk8XIsrotI64JWOMEaNCOOGyEsISxtnHSUGqo0TWxUgOXrucTiX3bMN1IyrExIBp2Wc0HX5f0Ru1z2Ol8UEkH9QOkvFI6l2C3oBzR1HlOPWksd7XTUmLhjbcgsGkp9F63g9c-p49P6IrapM8c-_iKNrXsU3HBexYbWDanrsvg_74SrI5dqKELdexC_XbRq24GVQCAP4WUUnCM2TdCJYWw</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Behan, Ladislav</creator><creator>Rozhon, Jan</creator><creator>Safarik, Jakub</creator><creator>Rezac, Filip</creator><creator>Voznak, Miroslav</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5135-7980</orcidid><orcidid>https://orcid.org/0000-0001-6147-1947</orcidid><orcidid>https://orcid.org/0000-0002-3360-2302</orcidid></search><sort><creationdate>20220101</creationdate><title>Efficient Detection of Spam over Internet Telephony by Machine Learning Algorithms</title><author>Behan, Ladislav ; Rozhon, Jan ; Safarik, Jakub ; Rezac, Filip ; Voznak, Miroslav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-4a1ecbd6eaead1d0b66c13387d9b22b2ba51c9ae49d358190f873a79240bbe673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Data mining</topic><topic>Internet</topic><topic>Internet telephony</topic><topic>Machine learning</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>SIP</topic><topic>spam</topic><topic>SPIT</topic><topic>Telephony</topic><topic>VoIP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Behan, Ladislav</creatorcontrib><creatorcontrib>Rozhon, Jan</creatorcontrib><creatorcontrib>Safarik, Jakub</creatorcontrib><creatorcontrib>Rezac, Filip</creatorcontrib><creatorcontrib>Voznak, Miroslav</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Behan, Ladislav</au><au>Rozhon, Jan</au><au>Safarik, Jakub</au><au>Rezac, Filip</au><au>Voznak, Miroslav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Detection of Spam over Internet Telephony by Machine Learning Algorithms</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>10</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Recent trends show a growing interest in VoIP services and indicate that guaranteeing security in VoIP services and preventing hacker communities from attacking telecommunication solutions is a challenging task. Spam over Internet Telephony (SPIT) is a type of attack which is a significant detriment to the user's experience. A number of techniques have been produced to detect SPIT calls. We reviewed these techniques and have proposed a new approach for quick, efficient and highly accurate detection of SPIT calls using neural networks and novel call parameters. The performance of this system was compared to other state-of-art machine learning algorithms on a real-world dataset, which has been published online and is publicly available. The results of the study demonstrated that new parameters may help improve the effectiveness and accuracy of applied machine learning algorithms. The study explored the entire process of designing a SPIT detection algorithm, including data collection and processing, defining suitable parameters, and final evaluation of machine learning models.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3231384</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5135-7980</orcidid><orcidid>https://orcid.org/0000-0001-6147-1947</orcidid><orcidid>https://orcid.org/0000-0002-3360-2302</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022-01, Vol.10, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2022_3231384
source Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library
subjects Algorithms
Data mining
Internet
Internet telephony
Machine learning
neural network
Neural networks
Parameters
SIP
spam
SPIT
Telephony
VoIP
title Efficient Detection of Spam over Internet Telephony by Machine Learning Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A25%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Detection%20of%20Spam%20over%20Internet%20Telephony%20by%20Machine%20Learning%20Algorithms&rft.jtitle=IEEE%20access&rft.au=Behan,%20Ladislav&rft.date=2022-01-01&rft.volume=10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3231384&rft_dat=%3Cproquest_cross%3E2759387464%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759387464&rft_id=info:pmid/&rft_ieee_id=9996400&rft_doaj_id=oai_doaj_org_article_d1a2df42f17c4d5da9906fbfce60b82e&rfr_iscdi=true