RTS-GAT: Spatial Graph Attention-Based Spatio-Temporal Flow Prediction for Big Data Retailing
Intelligent logistics is a crucial element in the era of innovative retailing. The retail industry may benefit from more sophisticated logistics forecasting, management, and collaboration to lower costs, boost efficiency, and improve service standards. It is vital to intelligent retail's optimi...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.133232-133243 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 133243 |
---|---|
container_issue | |
container_start_page | 133232 |
container_title | IEEE access |
container_volume | 10 |
creator | Luo, Siyang |
description | Intelligent logistics is a crucial element in the era of innovative retailing. The retail industry may benefit from more sophisticated logistics forecasting, management, and collaboration to lower costs, boost efficiency, and improve service standards. It is vital to intelligent retail's optimization of logistics and retail product transportation. Decoupling the retail road network traffic flow big data from the temporal or spatial dimension and creating strong correlations are the keys to effective modeling since it is a high-dimensional, Spatio-temporal sequence. While the spatial dimension does not correlate with the temporal dimension of the retail road network traffic flow, the temporal dimension varies continuously. This feature allows us to separate the spatial-temporal sequence of retail road network traffic flow into spatial graph data and model it primarily using the spatial correlation paradigm. In this study, we examine the variables that affect the retail road network's traffic flow based on the demand for human travel. And we suggest a unique deep learning-based representation and fusion method of temporal, spatial, and traffic flow features as features of the spatial graph nodes of the shared spatial graph neural network framework RTS-GAT. Individual primitive features are restricted to be simultaneously learned and optimized in the feature space associated with each other in the modeling context of shared model parameters, and efficient eigenfeature representations are learned. After rigorous and comprehensive experimental validation, the RTS-GAT model achieves the best performance to date on multiple datasets. |
doi_str_mv | 10.1109/ACCESS.2022.3230660 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3230660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9992002</ieee_id><doaj_id>oai_doaj_org_article_dc6a506366e64744910fd03d1da76eab</doaj_id><sourcerecordid>2759387968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-5954bd77102ef2b60306b041ba868c8598d690219ff7056aa7cdc32ed75b5c543</originalsourceid><addsrcrecordid>eNpNUcFOwzAMrRBIIOALuFTi3OEkTdJwGwMGEhKIjSOK3CQdmcpS0kyIv6ejCOGLLfu9Z1svy84ITAgBdTGdzW4WiwkFSieMMhAC9rIjSoQqGGdi_199mJ32_RqGqIYWl0fZ6_NyUcyny8t80WHy2ObziN1bPk3JbZIPm-IKe2fHaSiW7r0LcUDdtuEzf4rOerND5U2I-ZVf5deYMH92CX3rN6uT7KDBtnenv_k4e7m9Wc7uiofH-f1s-lAYxqpUcMXL2kpJgLqG1gKGJ2ooSY2VqEzFVWWFAkpU00jgAlEaaxh1VvKaG16y4-x-1LUB17qL_h3jlw7o9U8jxJXGmLxpnbZGIAfBhHCilGWpCDQWmCUWpXBYD1rno1YXw8fW9UmvwzZuhvM1lVyxSipRDSg2okwMfR9d87eVgN7Zokdb9M4W_WvLwDobWd4598dQSlEAyr4BZVmGcw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759387968</pqid></control><display><type>article</type><title>RTS-GAT: Spatial Graph Attention-Based Spatio-Temporal Flow Prediction for Big Data Retailing</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Luo, Siyang</creator><creatorcontrib>Luo, Siyang</creatorcontrib><description>Intelligent logistics is a crucial element in the era of innovative retailing. The retail industry may benefit from more sophisticated logistics forecasting, management, and collaboration to lower costs, boost efficiency, and improve service standards. It is vital to intelligent retail's optimization of logistics and retail product transportation. Decoupling the retail road network traffic flow big data from the temporal or spatial dimension and creating strong correlations are the keys to effective modeling since it is a high-dimensional, Spatio-temporal sequence. While the spatial dimension does not correlate with the temporal dimension of the retail road network traffic flow, the temporal dimension varies continuously. This feature allows us to separate the spatial-temporal sequence of retail road network traffic flow into spatial graph data and model it primarily using the spatial correlation paradigm. In this study, we examine the variables that affect the retail road network's traffic flow based on the demand for human travel. And we suggest a unique deep learning-based representation and fusion method of temporal, spatial, and traffic flow features as features of the spatial graph nodes of the shared spatial graph neural network framework RTS-GAT. Individual primitive features are restricted to be simultaneously learned and optimized in the feature space associated with each other in the modeling context of shared model parameters, and efficient eigenfeature representations are learned. After rigorous and comprehensive experimental validation, the RTS-GAT model achieves the best performance to date on multiple datasets.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3230660</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Attention mechanism ; Big Data ; big data retailing ; Communications traffic ; Correlation ; Data models ; Decoupling ; graph neural network ; Graph neural networks ; intelligent retail logistics ; Logistics ; Modelling ; Optimization ; Predictive models ; Recurrent neural networks ; Representations ; Retail stores ; Retailing ; Roads ; Spatial data ; Telecommunication traffic ; Traffic flow ; Transportation networks</subject><ispartof>IEEE access, 2022, Vol.10, p.133232-133243</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-5954bd77102ef2b60306b041ba868c8598d690219ff7056aa7cdc32ed75b5c543</citedby><cites>FETCH-LOGICAL-c338t-5954bd77102ef2b60306b041ba868c8598d690219ff7056aa7cdc32ed75b5c543</cites><orcidid>0000-0002-2422-6982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9992002$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Luo, Siyang</creatorcontrib><title>RTS-GAT: Spatial Graph Attention-Based Spatio-Temporal Flow Prediction for Big Data Retailing</title><title>IEEE access</title><addtitle>Access</addtitle><description>Intelligent logistics is a crucial element in the era of innovative retailing. The retail industry may benefit from more sophisticated logistics forecasting, management, and collaboration to lower costs, boost efficiency, and improve service standards. It is vital to intelligent retail's optimization of logistics and retail product transportation. Decoupling the retail road network traffic flow big data from the temporal or spatial dimension and creating strong correlations are the keys to effective modeling since it is a high-dimensional, Spatio-temporal sequence. While the spatial dimension does not correlate with the temporal dimension of the retail road network traffic flow, the temporal dimension varies continuously. This feature allows us to separate the spatial-temporal sequence of retail road network traffic flow into spatial graph data and model it primarily using the spatial correlation paradigm. In this study, we examine the variables that affect the retail road network's traffic flow based on the demand for human travel. And we suggest a unique deep learning-based representation and fusion method of temporal, spatial, and traffic flow features as features of the spatial graph nodes of the shared spatial graph neural network framework RTS-GAT. Individual primitive features are restricted to be simultaneously learned and optimized in the feature space associated with each other in the modeling context of shared model parameters, and efficient eigenfeature representations are learned. After rigorous and comprehensive experimental validation, the RTS-GAT model achieves the best performance to date on multiple datasets.</description><subject>Attention mechanism</subject><subject>Big Data</subject><subject>big data retailing</subject><subject>Communications traffic</subject><subject>Correlation</subject><subject>Data models</subject><subject>Decoupling</subject><subject>graph neural network</subject><subject>Graph neural networks</subject><subject>intelligent retail logistics</subject><subject>Logistics</subject><subject>Modelling</subject><subject>Optimization</subject><subject>Predictive models</subject><subject>Recurrent neural networks</subject><subject>Representations</subject><subject>Retail stores</subject><subject>Retailing</subject><subject>Roads</subject><subject>Spatial data</subject><subject>Telecommunication traffic</subject><subject>Traffic flow</subject><subject>Transportation networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFOwzAMrRBIIOALuFTi3OEkTdJwGwMGEhKIjSOK3CQdmcpS0kyIv6ejCOGLLfu9Z1svy84ITAgBdTGdzW4WiwkFSieMMhAC9rIjSoQqGGdi_199mJ32_RqGqIYWl0fZ6_NyUcyny8t80WHy2ObziN1bPk3JbZIPm-IKe2fHaSiW7r0LcUDdtuEzf4rOerND5U2I-ZVf5deYMH92CX3rN6uT7KDBtnenv_k4e7m9Wc7uiofH-f1s-lAYxqpUcMXL2kpJgLqG1gKGJ2ooSY2VqEzFVWWFAkpU00jgAlEaaxh1VvKaG16y4-x-1LUB17qL_h3jlw7o9U8jxJXGmLxpnbZGIAfBhHCilGWpCDQWmCUWpXBYD1rno1YXw8fW9UmvwzZuhvM1lVyxSipRDSg2okwMfR9d87eVgN7Zokdb9M4W_WvLwDobWd4598dQSlEAyr4BZVmGcw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Luo, Siyang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2422-6982</orcidid></search><sort><creationdate>2022</creationdate><title>RTS-GAT: Spatial Graph Attention-Based Spatio-Temporal Flow Prediction for Big Data Retailing</title><author>Luo, Siyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-5954bd77102ef2b60306b041ba868c8598d690219ff7056aa7cdc32ed75b5c543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Attention mechanism</topic><topic>Big Data</topic><topic>big data retailing</topic><topic>Communications traffic</topic><topic>Correlation</topic><topic>Data models</topic><topic>Decoupling</topic><topic>graph neural network</topic><topic>Graph neural networks</topic><topic>intelligent retail logistics</topic><topic>Logistics</topic><topic>Modelling</topic><topic>Optimization</topic><topic>Predictive models</topic><topic>Recurrent neural networks</topic><topic>Representations</topic><topic>Retail stores</topic><topic>Retailing</topic><topic>Roads</topic><topic>Spatial data</topic><topic>Telecommunication traffic</topic><topic>Traffic flow</topic><topic>Transportation networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Siyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Siyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RTS-GAT: Spatial Graph Attention-Based Spatio-Temporal Flow Prediction for Big Data Retailing</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>133232</spage><epage>133243</epage><pages>133232-133243</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Intelligent logistics is a crucial element in the era of innovative retailing. The retail industry may benefit from more sophisticated logistics forecasting, management, and collaboration to lower costs, boost efficiency, and improve service standards. It is vital to intelligent retail's optimization of logistics and retail product transportation. Decoupling the retail road network traffic flow big data from the temporal or spatial dimension and creating strong correlations are the keys to effective modeling since it is a high-dimensional, Spatio-temporal sequence. While the spatial dimension does not correlate with the temporal dimension of the retail road network traffic flow, the temporal dimension varies continuously. This feature allows us to separate the spatial-temporal sequence of retail road network traffic flow into spatial graph data and model it primarily using the spatial correlation paradigm. In this study, we examine the variables that affect the retail road network's traffic flow based on the demand for human travel. And we suggest a unique deep learning-based representation and fusion method of temporal, spatial, and traffic flow features as features of the spatial graph nodes of the shared spatial graph neural network framework RTS-GAT. Individual primitive features are restricted to be simultaneously learned and optimized in the feature space associated with each other in the modeling context of shared model parameters, and efficient eigenfeature representations are learned. After rigorous and comprehensive experimental validation, the RTS-GAT model achieves the best performance to date on multiple datasets.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3230660</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2422-6982</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.133232-133243 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2022_3230660 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Attention mechanism Big Data big data retailing Communications traffic Correlation Data models Decoupling graph neural network Graph neural networks intelligent retail logistics Logistics Modelling Optimization Predictive models Recurrent neural networks Representations Retail stores Retailing Roads Spatial data Telecommunication traffic Traffic flow Transportation networks |
title | RTS-GAT: Spatial Graph Attention-Based Spatio-Temporal Flow Prediction for Big Data Retailing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A21%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RTS-GAT:%20Spatial%20Graph%20Attention-Based%20Spatio-Temporal%20Flow%20Prediction%20for%20Big%20Data%20Retailing&rft.jtitle=IEEE%20access&rft.au=Luo,%20Siyang&rft.date=2022&rft.volume=10&rft.spage=133232&rft.epage=133243&rft.pages=133232-133243&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3230660&rft_dat=%3Cproquest_cross%3E2759387968%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759387968&rft_id=info:pmid/&rft_ieee_id=9992002&rft_doaj_id=oai_doaj_org_article_dc6a506366e64744910fd03d1da76eab&rfr_iscdi=true |