RTS-GAT: Spatial Graph Attention-Based Spatio-Temporal Flow Prediction for Big Data Retailing

Intelligent logistics is a crucial element in the era of innovative retailing. The retail industry may benefit from more sophisticated logistics forecasting, management, and collaboration to lower costs, boost efficiency, and improve service standards. It is vital to intelligent retail's optimi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.133232-133243
1. Verfasser: Luo, Siyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 133243
container_issue
container_start_page 133232
container_title IEEE access
container_volume 10
creator Luo, Siyang
description Intelligent logistics is a crucial element in the era of innovative retailing. The retail industry may benefit from more sophisticated logistics forecasting, management, and collaboration to lower costs, boost efficiency, and improve service standards. It is vital to intelligent retail's optimization of logistics and retail product transportation. Decoupling the retail road network traffic flow big data from the temporal or spatial dimension and creating strong correlations are the keys to effective modeling since it is a high-dimensional, Spatio-temporal sequence. While the spatial dimension does not correlate with the temporal dimension of the retail road network traffic flow, the temporal dimension varies continuously. This feature allows us to separate the spatial-temporal sequence of retail road network traffic flow into spatial graph data and model it primarily using the spatial correlation paradigm. In this study, we examine the variables that affect the retail road network's traffic flow based on the demand for human travel. And we suggest a unique deep learning-based representation and fusion method of temporal, spatial, and traffic flow features as features of the spatial graph nodes of the shared spatial graph neural network framework RTS-GAT. Individual primitive features are restricted to be simultaneously learned and optimized in the feature space associated with each other in the modeling context of shared model parameters, and efficient eigenfeature representations are learned. After rigorous and comprehensive experimental validation, the RTS-GAT model achieves the best performance to date on multiple datasets.
doi_str_mv 10.1109/ACCESS.2022.3230660
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3230660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9992002</ieee_id><doaj_id>oai_doaj_org_article_dc6a506366e64744910fd03d1da76eab</doaj_id><sourcerecordid>2759387968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-5954bd77102ef2b60306b041ba868c8598d690219ff7056aa7cdc32ed75b5c543</originalsourceid><addsrcrecordid>eNpNUcFOwzAMrRBIIOALuFTi3OEkTdJwGwMGEhKIjSOK3CQdmcpS0kyIv6ejCOGLLfu9Z1svy84ITAgBdTGdzW4WiwkFSieMMhAC9rIjSoQqGGdi_199mJ32_RqGqIYWl0fZ6_NyUcyny8t80WHy2ObziN1bPk3JbZIPm-IKe2fHaSiW7r0LcUDdtuEzf4rOerND5U2I-ZVf5deYMH92CX3rN6uT7KDBtnenv_k4e7m9Wc7uiofH-f1s-lAYxqpUcMXL2kpJgLqG1gKGJ2ooSY2VqEzFVWWFAkpU00jgAlEaaxh1VvKaG16y4-x-1LUB17qL_h3jlw7o9U8jxJXGmLxpnbZGIAfBhHCilGWpCDQWmCUWpXBYD1rno1YXw8fW9UmvwzZuhvM1lVyxSipRDSg2okwMfR9d87eVgN7Zokdb9M4W_WvLwDobWd4598dQSlEAyr4BZVmGcw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759387968</pqid></control><display><type>article</type><title>RTS-GAT: Spatial Graph Attention-Based Spatio-Temporal Flow Prediction for Big Data Retailing</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Luo, Siyang</creator><creatorcontrib>Luo, Siyang</creatorcontrib><description>Intelligent logistics is a crucial element in the era of innovative retailing. The retail industry may benefit from more sophisticated logistics forecasting, management, and collaboration to lower costs, boost efficiency, and improve service standards. It is vital to intelligent retail's optimization of logistics and retail product transportation. Decoupling the retail road network traffic flow big data from the temporal or spatial dimension and creating strong correlations are the keys to effective modeling since it is a high-dimensional, Spatio-temporal sequence. While the spatial dimension does not correlate with the temporal dimension of the retail road network traffic flow, the temporal dimension varies continuously. This feature allows us to separate the spatial-temporal sequence of retail road network traffic flow into spatial graph data and model it primarily using the spatial correlation paradigm. In this study, we examine the variables that affect the retail road network's traffic flow based on the demand for human travel. And we suggest a unique deep learning-based representation and fusion method of temporal, spatial, and traffic flow features as features of the spatial graph nodes of the shared spatial graph neural network framework RTS-GAT. Individual primitive features are restricted to be simultaneously learned and optimized in the feature space associated with each other in the modeling context of shared model parameters, and efficient eigenfeature representations are learned. After rigorous and comprehensive experimental validation, the RTS-GAT model achieves the best performance to date on multiple datasets.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3230660</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Attention mechanism ; Big Data ; big data retailing ; Communications traffic ; Correlation ; Data models ; Decoupling ; graph neural network ; Graph neural networks ; intelligent retail logistics ; Logistics ; Modelling ; Optimization ; Predictive models ; Recurrent neural networks ; Representations ; Retail stores ; Retailing ; Roads ; Spatial data ; Telecommunication traffic ; Traffic flow ; Transportation networks</subject><ispartof>IEEE access, 2022, Vol.10, p.133232-133243</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-5954bd77102ef2b60306b041ba868c8598d690219ff7056aa7cdc32ed75b5c543</citedby><cites>FETCH-LOGICAL-c338t-5954bd77102ef2b60306b041ba868c8598d690219ff7056aa7cdc32ed75b5c543</cites><orcidid>0000-0002-2422-6982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9992002$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Luo, Siyang</creatorcontrib><title>RTS-GAT: Spatial Graph Attention-Based Spatio-Temporal Flow Prediction for Big Data Retailing</title><title>IEEE access</title><addtitle>Access</addtitle><description>Intelligent logistics is a crucial element in the era of innovative retailing. The retail industry may benefit from more sophisticated logistics forecasting, management, and collaboration to lower costs, boost efficiency, and improve service standards. It is vital to intelligent retail's optimization of logistics and retail product transportation. Decoupling the retail road network traffic flow big data from the temporal or spatial dimension and creating strong correlations are the keys to effective modeling since it is a high-dimensional, Spatio-temporal sequence. While the spatial dimension does not correlate with the temporal dimension of the retail road network traffic flow, the temporal dimension varies continuously. This feature allows us to separate the spatial-temporal sequence of retail road network traffic flow into spatial graph data and model it primarily using the spatial correlation paradigm. In this study, we examine the variables that affect the retail road network's traffic flow based on the demand for human travel. And we suggest a unique deep learning-based representation and fusion method of temporal, spatial, and traffic flow features as features of the spatial graph nodes of the shared spatial graph neural network framework RTS-GAT. Individual primitive features are restricted to be simultaneously learned and optimized in the feature space associated with each other in the modeling context of shared model parameters, and efficient eigenfeature representations are learned. After rigorous and comprehensive experimental validation, the RTS-GAT model achieves the best performance to date on multiple datasets.</description><subject>Attention mechanism</subject><subject>Big Data</subject><subject>big data retailing</subject><subject>Communications traffic</subject><subject>Correlation</subject><subject>Data models</subject><subject>Decoupling</subject><subject>graph neural network</subject><subject>Graph neural networks</subject><subject>intelligent retail logistics</subject><subject>Logistics</subject><subject>Modelling</subject><subject>Optimization</subject><subject>Predictive models</subject><subject>Recurrent neural networks</subject><subject>Representations</subject><subject>Retail stores</subject><subject>Retailing</subject><subject>Roads</subject><subject>Spatial data</subject><subject>Telecommunication traffic</subject><subject>Traffic flow</subject><subject>Transportation networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFOwzAMrRBIIOALuFTi3OEkTdJwGwMGEhKIjSOK3CQdmcpS0kyIv6ejCOGLLfu9Z1svy84ITAgBdTGdzW4WiwkFSieMMhAC9rIjSoQqGGdi_199mJ32_RqGqIYWl0fZ6_NyUcyny8t80WHy2ObziN1bPk3JbZIPm-IKe2fHaSiW7r0LcUDdtuEzf4rOerND5U2I-ZVf5deYMH92CX3rN6uT7KDBtnenv_k4e7m9Wc7uiofH-f1s-lAYxqpUcMXL2kpJgLqG1gKGJ2ooSY2VqEzFVWWFAkpU00jgAlEaaxh1VvKaG16y4-x-1LUB17qL_h3jlw7o9U8jxJXGmLxpnbZGIAfBhHCilGWpCDQWmCUWpXBYD1rno1YXw8fW9UmvwzZuhvM1lVyxSipRDSg2okwMfR9d87eVgN7Zokdb9M4W_WvLwDobWd4598dQSlEAyr4BZVmGcw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Luo, Siyang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2422-6982</orcidid></search><sort><creationdate>2022</creationdate><title>RTS-GAT: Spatial Graph Attention-Based Spatio-Temporal Flow Prediction for Big Data Retailing</title><author>Luo, Siyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-5954bd77102ef2b60306b041ba868c8598d690219ff7056aa7cdc32ed75b5c543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Attention mechanism</topic><topic>Big Data</topic><topic>big data retailing</topic><topic>Communications traffic</topic><topic>Correlation</topic><topic>Data models</topic><topic>Decoupling</topic><topic>graph neural network</topic><topic>Graph neural networks</topic><topic>intelligent retail logistics</topic><topic>Logistics</topic><topic>Modelling</topic><topic>Optimization</topic><topic>Predictive models</topic><topic>Recurrent neural networks</topic><topic>Representations</topic><topic>Retail stores</topic><topic>Retailing</topic><topic>Roads</topic><topic>Spatial data</topic><topic>Telecommunication traffic</topic><topic>Traffic flow</topic><topic>Transportation networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Siyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Siyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RTS-GAT: Spatial Graph Attention-Based Spatio-Temporal Flow Prediction for Big Data Retailing</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>133232</spage><epage>133243</epage><pages>133232-133243</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Intelligent logistics is a crucial element in the era of innovative retailing. The retail industry may benefit from more sophisticated logistics forecasting, management, and collaboration to lower costs, boost efficiency, and improve service standards. It is vital to intelligent retail's optimization of logistics and retail product transportation. Decoupling the retail road network traffic flow big data from the temporal or spatial dimension and creating strong correlations are the keys to effective modeling since it is a high-dimensional, Spatio-temporal sequence. While the spatial dimension does not correlate with the temporal dimension of the retail road network traffic flow, the temporal dimension varies continuously. This feature allows us to separate the spatial-temporal sequence of retail road network traffic flow into spatial graph data and model it primarily using the spatial correlation paradigm. In this study, we examine the variables that affect the retail road network's traffic flow based on the demand for human travel. And we suggest a unique deep learning-based representation and fusion method of temporal, spatial, and traffic flow features as features of the spatial graph nodes of the shared spatial graph neural network framework RTS-GAT. Individual primitive features are restricted to be simultaneously learned and optimized in the feature space associated with each other in the modeling context of shared model parameters, and efficient eigenfeature representations are learned. After rigorous and comprehensive experimental validation, the RTS-GAT model achieves the best performance to date on multiple datasets.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3230660</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2422-6982</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.133232-133243
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2022_3230660
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Attention mechanism
Big Data
big data retailing
Communications traffic
Correlation
Data models
Decoupling
graph neural network
Graph neural networks
intelligent retail logistics
Logistics
Modelling
Optimization
Predictive models
Recurrent neural networks
Representations
Retail stores
Retailing
Roads
Spatial data
Telecommunication traffic
Traffic flow
Transportation networks
title RTS-GAT: Spatial Graph Attention-Based Spatio-Temporal Flow Prediction for Big Data Retailing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A21%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RTS-GAT:%20Spatial%20Graph%20Attention-Based%20Spatio-Temporal%20Flow%20Prediction%20for%20Big%20Data%20Retailing&rft.jtitle=IEEE%20access&rft.au=Luo,%20Siyang&rft.date=2022&rft.volume=10&rft.spage=133232&rft.epage=133243&rft.pages=133232-133243&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3230660&rft_dat=%3Cproquest_cross%3E2759387968%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759387968&rft_id=info:pmid/&rft_ieee_id=9992002&rft_doaj_id=oai_doaj_org_article_dc6a506366e64744910fd03d1da76eab&rfr_iscdi=true